## The JUNO experiment: status and prospects

Maxim Gonchar on behalf of the JUNO collaboration Joint Institute for Nuclear Research NUCLEUS 2022, July 13, 2022

## 1 INTRODUCTION

- Glossary
- Neutrino at JUNO
- Neutrino mixing and oscillations
- Reactor  $\overline{\nu}$  oscillations
- 2 EXPERIMENT
  - Map
  - Detectors
- 3 Status
  - General status
  - PMT
  - LS

- OSIRIS
- Calibration
- Energy resolution
- 4 Physics
  - Reactor  $\overline{\nu}_e$
  - Solar  $\nu_e$  from <sup>8</sup>B
  - SuperNova and DSNB
  - Atmospheric  $\nu_{\mu}/\overline{\nu}_{\mu}$
  - Geo-neutrino
  - Proton decay
  - Reactor  $\overline{\nu}_s$
- 5 CONCLUSION



- JUNO Jiangmen Underground Neutrino Observatory
  - ► The main experiment
  - The main detector
  - The project name: it has a few other detectors

もちゃん 正則 スポットポット 白マ



- JUNO Jiangmen Underground Neutrino Observatory
  - The main experiment
  - The main detector
  - The project name: it has a few other detectors
- TAO detector Taishan Neutrino Observatory
  - Satellite small short baseline antineutrino detector



- JUNO Jiangmen Underground Neutrino Observatory
  - ► The main experiment
  - The main detector
  - The project name: it has a few other detectors
- TAO detector Taishan Neutrino Observatory
  - Satellite small short baseline antineutrino detector
- OSIRIS detector Online Scintillator Internal Radioactivity Investigation System
  - A utility detector to monitor scintillator internal radioactivity



- JUNO Jiangmen Underground Neutrino Observatory
  - ► The main experiment
  - The main detector
  - The project name: it has a few other detectors
- TAO detector Taishan Neutrino Observatory
  - Satellite small short baseline antineutrino detector
- OSIRIS detector Online Scintillator Internal Radioactivity Investigation System
  - A utility detector to monitor scintillator internal radioactivity
- Serappis project SEarch for RAre PP-neutrinos In Scintillator
  - ► A possible upgrade of OSIRIS to measure solar pp neutrinos

(비로 서로) 서로 > 서랍 > 서마 >

Glossary Neutrino Mixing Reactor  $\overline{\nu}$ 

#### PHYSICS WITH JUNO: NEUTRINOS AND MORE...



DSNB — Diffuse SuperNova Background

\* Rates after selection

1.5

イロン 不通 とうせい うけ



Glossary Neutrino Mixing Reactor  $\overline{\nu}$ 

#### Physics with JUNO: Neutrinos and more...



#### Osc. [2204.13249], TAO [2005.08745]



# Neutrino physics Reactor Long baseline ~47 IBD/day Short baseline @TAO ~2000 IBD/day

DSNB — Diffuse SuperNova Background

IBD — Inverse Beta Decay

\* Rates after selection

Glossary Neutrino Mixing Reactor  $\overline{\nu}$ 

## Physics with JUNO: Neutrinos and more...



<sup>8</sup>B [2006.11760], OSIRIS-Serappis [2109.10782], JUNO [2104.02565] Neutrino physics  $\sim$ 47 IBD/dav Reactor Solar ▶ <sup>7</sup>Be  $\sim 130 \text{ ES/day}$  $\sim 17 \text{ ES/day}$ pep CNO  $\sim 16 \text{ ES/day}$  $^{8}B$  ${\sim}16~{\sf ES/day}$ (high E)  $\sim 16~{\sf ES/day}$ pp @OSIRIS <sup>7</sup>Be **@OSIRIS**  $\sim$  4.5 ES/dav

DSNB — Diffuse SuperNova Background

IBD — Inverse Beta Decay

ES — Elastic Scattering

\* Rates after selection

Maxim Gonchar (JINR)

・ロト・日本・モート 御子 ろくの

Glossary Neutrino Mixing Reactor  $\overline{\nu}$ 

#### Physics with JUNO: Neutrinos and more...





DSNB — Diffuse SuperNova Background

IBD — Inverse Beta Decay

ES — Elastic Scattering

\* Rates after selection

Maxim Gonchar (JINR)

<ロ> < 団> < 団> < 団> < 団> < 団> < 団> < 団</p>

July 13, 2022

Glossary Neutrino Mixing Reactor  $\overline{\nu}$ 

#### Physics with JUNO: Neutrinos and more...







DSNB — Diffuse SuperNova Background

IBD — Inverse Beta Decay

ES — Elastic Scattering

\* Rates after selection

July 13, 2022

Glossary Neutrino Mixing Reactor  $\overline{\nu}$ 

#### Physics with JUNO: Neutrinos and More...





DSNB — Diffuse SuperNova Background

IBD — Inverse Beta Decay

ES — Elastic Scattering

\* Rates after selection

July 13, 2022

Glossary Neutrino Mixing Reactor  $\overline{\nu}$ 

#### Physics with JUNO: Neutrinos and more...





- DSNB Diffuse SuperNova Background
- IBD Inverse Beta Decay
- ES Elastic Scattering
- CC Charged Current
- \* Rates after selection

Maxim Gonchar (JINR)

・ロト・日本・日本・日本 御神 ろくの

Glossary Neutrino Mixing Reactor  $\overline{\nu}$ 

Other searches

#### Physics with JUNO: Neutrinos and more...





- DSNB Diffuse SuperNova Background
- IBD Inverse Beta Decay
- ES Elastic Scattering
- CC Charged Current
- \* Rates after selection

Maxim Gonchar (JINR)

JUNO

Glossary Neutrino Mixing Reactor  $\overline{\nu}$ 

## MANDATORY SLIDE I: NEUTRINO MIXING





Weak and mass eigenstates differ:  $|\nu_{\alpha}\rangle = \sum U_{\alpha i}^{*}|\nu_{i}\rangle$   $\alpha - \text{flavor states}$  i - mass statesMixing parametrized by: • three mixing angles:  $\theta_{12}, \theta_{23}, \theta_{13},$ • CP-violating phase:  $\delta_{\text{CP}}.$ 

Glossarv Neutrino Mixing Reactor  $\overline{\nu}$ 

## MANDATORY SLIDE I: NEUTRINO MIXING



Weak and mass eigenstates differ:  $|\nu_{\alpha}\rangle = \sum U_{\alpha i}^{*}|\nu_{i}\rangle$  $\alpha$  – flavor states i - mass statesMixing parametrized by: three mixing angles:  $\theta_{12}, \theta_{23}, \theta_{13},$  CP-violating phase:  $\delta_{CP}$ . Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix:  $\checkmark$   $\theta_{23} \approx 45^{\circ}$  established through atmospheric and accelerator experiments: possibly maximal.

✓  $\theta_{12} \approx 34^{\circ}$  established through solar experiments and KamLAND: large, but not maximal.

- ✓  $\theta_{13} \approx 8^{\circ}$  established by reactor:
- $\delta_{CP}$  unknown:

NOvA and T2K

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●目目 のへで

Daya Bay, RENO, Double Chooz.

Glossary Neutrino Mixing Reactor  $\overline{\nu}$ 

## MANDATORY SLIDE II: NEUTRINO MASS AND ORDERING





#### Mass splitting: oscillations PDG2020

- $\Delta m^2_{21} = (7.53 \pm 0.18) imes 10^{-5} \, {
  m eV}^2$
- $\left|\Delta m^2_{32}\right|_{
  m NO} = (2.453\pm0.033) imes 10^{-3} \, {
  m eV}^2$
- $\left|\Delta m^2_{32}\right|/\Delta m^2_{21}\sim 31$

( ) < ) < )</p>

## MANDATORY SLIDE II: NEUTRINO MASS AND ORDERING





Mass splitting: oscillations PDG2020

- $\Delta m^2_{21} = (7.53 \pm 0.18) \times 10^{-5} \, \mathrm{eV}^2$
- $\left|\Delta m^2_{32}\right|_{
  m NO} = (2.453\pm0.033) imes 10^{-3} \, {
  m eV}^2$
- $\left|\Delta m^2_{32}\right|/\Delta m^2_{21}\sim 31$
- Mass ordering: is  $\nu_1$  lighter than  $\nu_3$ ?

Glossary Neutrino Mixing Reactor  $\overline{\nu}$ 

## MANDATORY SLIDE II: NEUTRINO MASS AND ORDERING





Mass splitting: oscillations PDG2020

- $\Delta m^2_{21} = (7.53 \pm 0.18) \times 10^{-5} \, \mathrm{eV}^2$
- $\left|\Delta m^2_{32}\right|_{NO} = (2.453 \pm 0.033) \times 10^{-3} \, \mathrm{eV}^2$
- $\left|\Delta m^2_{32}\right|/\Delta m^2_{21}\sim 31$
- Mass ordering: is  $\nu_1$  lighter than  $\nu_3$ ?

#### Neutrino mass

• Mass limits, meV:  $m_2, m_3 > 0$   $\sum m_{\nu} \gtrsim 60$   $\sum m_{\nu} \lesssim 120$  cosmology  $m_{\nu_e} < 900$  direct  $\langle m_{\beta\beta} \rangle < 156$  $m_{\text{light}} \lesssim 500$   $0\nu\beta\beta$ 



 $E_{
m vis} pprox E_{
u} - 0.78\,
m MeV$ 

Maxim Gonchar (JINR)

◆□▶ ◆□▶ ◆目≯ ◆目≯ ◆□▼

July 13, 2022

Glossary Neutrino Mixing Reactor  $\overline{\nu}$ 





Glossary Neutrino Mixing Reactor  $\overline{\nu}$ 



Glossarv Neutrino Mixing Reactor  $\overline{\nu}$ 



Maxim Gonchar (JINR)

Glossarv Neutrino Mixing Reactor  $\overline{\nu}$ 



Maxim Gonchar (JINR)

Glossary Neutrino Mixing Reactor  $\overline{\nu}$ 



 $E_{
m vis} pprox E_{
u} - 0.78\,
m MeV$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●目目 のへで



Introduction Experiment Status Physics Conclusion

Glossary Neutrino Mixing Reactor  $\overline{\nu}$ 



#### Challenges

- Unreliable antineutrino spectrum model:
- Energy resolution of the detector  $\sigma < 3\%$  at 1 MeV:
- Energy scale of the detector (uncertainty < 1%):

 $E_{
m vis} pprox E_{
u} - 0.78\,{
m MeV}$ 

 $\hookrightarrow$  know reference spectrum

- $\hookrightarrow$  resolve the peaks
- $\hookrightarrow$  ensure the peak positions

Introduction Experiment Status Physics Conclusion

Glossary Neutrino Mixing Reactor  $\overline{\nu}$ 



#### Challenges

- Unreliable antineutrino spectrum model:
- Energy resolution of the detector  $\sigma < 3\%$  at 1 MeV:
- Energy scale of the detector (uncertainty < 1%):

 $E_{
m vis} pprox E_{
u} - 0.78\,{
m MeV}$ 

 $\hookrightarrow$  know reference spectrum  $\hookrightarrow$  resolve the peaks

 $\hookrightarrow$  ensure the peak positions

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Introduction Experiment Status Physics Conclusion

Glossary Neutrino Mixing Reactor  $\overline{\nu}$ 



#### Challenges

- Unreliable antineutrino spectrum model:
- Energy resolution of the detector  $\sigma < 3\%$  at 1 MeV:
- Energy scale of the detector (uncertainty < 1%):

 $E_{
m vis} pprox E_{
u} - 0.78\,{
m MeV}$ 

 $\stackrel{\hookrightarrow}{\hookrightarrow} \mathsf{know} \text{ reference spectrum}$   $\stackrel{\hookrightarrow}{\hookrightarrow} \mathsf{resolve the peaks}$ 

 $\hookrightarrow$  ensure the peak positions

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A



- $\bullet\,$  Change of oscillation period with ordering  $\ll\,$  energy resolution
- Cumulative effect across most of the energy range

 $E_{
m vis} pprox E_{
u} - 0.78\,{
m MeV}$ 

July 13, 2022



- $\bullet\,$  Change of oscillation period with ordering  $\ll\,$  energy resolution
- Cumulative effect across most of the energy range
- Possible threat: fine structure in reactor  $\overline{\nu}_e$  spectrum need a reference measurement!

 $E_{
m vis} pprox E_{
u} - 0.78\,{
m MeV}$ 



(plot: same  $\Delta m_{ee}^2$ )

## The Experiment and its Status

Map Detectors

## JUNO AND TAO LOCATION

• JUNO — Jiangmen Underground Neutrino Observatory





Yangjian (YJ) Thermal power, GW 2.9×6 Total, GW 26

26.6 signal

Maxim Gonchar (JINR)

Taishan (TS) 4.6×2

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Map Detectors

## JUNO AND TAO LOCATION

• JUNO — Jiangmen Underground Neutrino Observatory









Yangjian (YJ) Taishan (TS) Thermal power, GW  $2.9 \times 6$  $4.6 \times 2$ Total. GW 26.6 signal

イロト 不同 トイヨト 不同 ト 1 = 9QQ July 13, 2022

Map Detectors

## JUNO AND TAO LOCATION

JUNO — Jiangmen Underground Neutrino Observatory



July 13, 2022

83 / 28



TAO — Taishan Antineutrino Observatory


#### JUNO DETECTOR

More light  $\rightarrow$  better resolution! More statistics!





#### JUNO DETECTOR

## More light $\rightarrow$ better resolution! More statistics!

#### Target

- 20 kt LS
- Optimized LY
- Acrylic sphere



LS — Liquid Scintillator LY — Light Yield

#### JUNO DETECTOR

## More light $\rightarrow$ better resolution! More statistics!

O

#### Target

- 20 kt LS
- Optimized LY
- Acrylic sphere

#### Support

• Stainless steel structure



LS — Liquid Scintillator LY — Light Yield

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

#### JUNO DETECTOR

## More light $\rightarrow$ better resolution! More statistics!

#### Target

- 20 kt LS
- Optimized LY
- Acrylic sphere



#### Support

• Stainless steel structure





- LS Liquid Scintillator
- LY Light Yield
- PMT PhotoMultiplier Tube
- QE Quantum Efficiency
- p.e. photo-electron

#### Light collection



- 18k 20" PMTs
- High QE: 29.6%
- 1665 p.e./MeV
- +26k 3" PMTs 🖞

July 13, 2022 94 / 28

#### JUNO DETECTOR

## More light $\rightarrow$ better resolution! More statistics!

٢

#### Target

- 20 kt LS
- Optimized LY
- Acrylic sphere

#### Coils

• Compensation of the Earth Magnetic Field

#### Support

• Stainless steel structure





- LS Liquid Scintillator
- LY Light Yield
- PMT PhotoMultiplier Tube
- QE Quantum Efficiency
- p.e. photo-electron

#### Light collection



- 18k 20" PMTs
- High QE: 29.6%
- 1665 p.e./MeV
- +26k 3" PMTs 🚆

ショック 正則 スポットポット 白マ

### JUNO DETECTOR

# More light $\rightarrow$ better resolution! More statistics!

#### Target

- 20 kt LS
- Optimized LY
- Acrylic sphere

#### Coils

• Compensation of the Earth Magnetic Field

#### Support

Stainless steel structure

▶ Inverse Beta Decay (IBD) selection ↓ ▶ Signal/Backgrounds

٧



- LS Liquid Scintillator
- LY Light Yield
- PMT PhotoMultiplier Tube
- QE Quantum Efficiency
- p.e. photo-electron
- PS Plastic Scintillator

#### Muon veto

- Top Tracker: 3 layers PS
- Water pool

#### Light collection



- 18k 20" PMTs
- High QE: 29.6%
- 1665 p.e./MeV
- +26k 3" PMTs 🚆

Maxim Gonchar (JINR)

July 13, 2022 9<sub>6</sub> / 28

Introduction Experiment Status Physics Conclusion

Map Detectors

#### JUNO AND TAO DETECTORS



|                        | JUNO                                  |  |  |
|------------------------|---------------------------------------|--|--|
| Attention              | Energy resolution $\sigma \downarrow$ |  |  |
| Method                 | Light collection <i>↑</i>             |  |  |
| Scintillator           | LS                                    |  |  |
| ΡΜΤο                   | 18k 20"                               |  |  |
| 1 101 13               | +26k 3"                               |  |  |
| Coverage, %            | 78                                    |  |  |
| Light col. p.e./MeV    | 1665                                  |  |  |
| $\sigma_E$ at 1 MeV, % | 2.9                                   |  |  |
| Thermal power, GW      | 26.6                                  |  |  |
| Baseline               | 52.5 km                               |  |  |
| IBD/day                | 47                                    |  |  |

JNO

TAO

#### JUNO AND TAO DETECTORS





|                        | IAO JUNO                              |         |  |
|------------------------|---------------------------------------|---------|--|
| Attention              | Energy resolution $\sigma \downarrow$ |         |  |
| Method                 | Light collect Dark noise $\downarrow$ | ction / |  |
| Scintillator           | <b>GdLS @ -50</b> °C                  | LS      |  |
| PMTs                   | SiPM                                  | 18k 20" |  |
|                        | 1.5M 5 mm                             | +26k 3" |  |
| Coverage, %            | 94                                    | 78 🎽    |  |
| Light col. p.e./MeV    | 4500                                  | 1665    |  |
| $\sigma_E$ at 1 MeV, % | 2                                     | 2.9     |  |
| Thermal power, GW      | 4.6                                   | 26.6    |  |
| Baseline               | 30 m                                  | 52.5 km |  |
| IBD/day                | 2000                                  | 47      |  |
|                        |                                       |         |  |

July 13, 2022 102 / 28

#### JUNO CONSTRUCTION STATUS

- Stainless Steel Structure:
- Acrylic sphere:

installation in progress



UNO

#### JUNO CONSTRUCTION STATUS

- Stainless Steel Structure:
- Acrylic sphere: installation in progress
- Photomultiplier Tubes:

ready for installation

• Electronics:

assembly ongoing

done



< A

#### JUNO CONSTRUCTION STATUS

- Stainless Steel Structure:
- Acrylic sphere: installation in progress
- Photomultiplier Tubes:
- ready for installation

done

- Electronics: assembly ongoing
- Liquid scintillator: purification plants under construction
- Cleanliness in the Hall: class 100'000 reached



done

Status PMT LS OSIRIS Calib Res

#### JUNO CONSTRUCTION STATUS

- Stainless Steel Structure:
- Acrylic sphere: installation in progress
- Photomultiplier Tubes: ready for installation
- Electronics: assembly ongoing
- Liquid scintillator: purification plants under construction
- Cleanliness in the Hall: class 100'000 reached
- Top Tracker: stintillator strips on site

JUNO





#### JUNO SCHEDULE





July 13, 2022

12 / 28

#### Photomultiplier tubes





|          | Large                     | e PMT,                                                                                                                                     | Small PMT,                                                                                                                                                                         |
|----------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | 20                        | -inch                                                                                                                                      | 3-inch                                                                                                                                                                             |
| Han      | namatsu                   | NNVT                                                                                                                                       | HZC                                                                                                                                                                                |
|          | 5000                      | 15'012                                                                                                                                     | 25'600                                                                                                                                                                             |
|          | Dynode                    | MCP                                                                                                                                        | Dynode                                                                                                                                                                             |
| %        | 28.50                     | 30.10                                                                                                                                      | 25.00                                                                                                                                                                              |
| (Bare)   | 15.3                      | 49.3                                                                                                                                       | 0.5                                                                                                                                                                                |
| (Potted) | 17.0                      | 31.2                                                                                                                                       | 0.5                                                                                                                                                                                |
|          | 1.3                       | 7                                                                                                                                          | 1.6                                                                                                                                                                                |
| /        | [0,                       | 100], p.e.                                                                                                                                 | [0, 2], p.e.                                                                                                                                                                       |
|          | 7!                        | 5.00                                                                                                                                       | 3.00                                                                                                                                                                               |
|          | [22                       | 05.08629]                                                                                                                                  | [2102.11538]                                                                                                                                                                       |
|          | Har<br>(Bare)<br>(Potted) | Large<br>20<br>Hamamatsu<br>5000<br>Dynode<br>% 28.50<br>(Bare) 15.3<br>(Potted) 17.0<br>1.3<br>(Potted) 17.0<br>1.3<br>(Potted) 22<br>(22 | Large PMT,<br>20-inch<br>Hamamatsu NNVT<br>5000 15'012<br>Dynode MCP<br>% 28.50 30.10<br>(Bare) 15.3 49.3<br>(Potted) 17.0 31.2<br>1.3 7<br>(0, 100], p.e.<br>75.0<br>[2205.08629] |

July 13, 2022

131 / 28

#### Photomultiplier tubes





|                                      |          | Large   | e PMT,     | Small PMT,   |
|--------------------------------------|----------|---------|------------|--------------|
| Diameter                             |          | 20      | -inch      | 3-inch       |
| Producer                             | Har      | namatsu | NNVT       | HZC          |
| Quantity                             |          | 5000    | 15'012     | 25'600       |
| Charge Collection                    |          | Dynode  | MCP        | Dynode       |
| Photon Detection Efficiency,         | %        | 28.50   | 30.10      | 25.00        |
| Mean Dark Count Rate,                | (Bare)   | 15.3    | 49.3       | 0.5          |
| kHz                                  | (Potted) | 17.0    | 31.2       | 0.5          |
| Transit Time Spread ( $\sigma$ ), ns |          | 1.3     | 7          | 1.6          |
| Dynamic range for 0–10 MeV           | /        | [0,     | 100], p.e. | [0, 2], p.e. |
| Coverage, %                          |          | 7       | 5.00       | 3.00         |
| Reference                            |          | [22     | 05.08629]  | [2102.11538] |

✓ All PMTs produced, tested. Waterproof potting applied.

✓ 12.6k most efficient NNVT PMTs are selected for the central detector.  $\hookrightarrow$  others will be installed in the Water Cherenkov detector.

#### PHOTOMULTIPLIER TUBES



|                                      |          | Large   | e PMT,     | Small PMT,   |
|--------------------------------------|----------|---------|------------|--------------|
| Diameter                             |          | 20      | -inch      | 3-inch       |
| Producer                             | Han      | namatsu | NNVT       | HZC          |
| Quantity                             |          | 5000    | 15'012     | 25'600       |
| Charge Collection                    |          | Dynode  | MCP        | Dynode       |
| Photon Detection Efficiency,         | %        | 28.50   | 30.10      | 25.00        |
| Mean Dark Count Rate,                | (Bare)   | 15.3    | 49.3       | 0.5          |
| kHz                                  | (Potted) | 17.0    | 31.2       | 0.5          |
| Transit Time Spread ( $\sigma$ ), ns |          | 1.3     | 7          | 1.6          |
| Dynamic range for 0–10 MeV           | 1        | [0,     | 100], p.e. | [0, 2], p.e. |
| Coverage, %                          |          | 7       | 5.00       | 3.00         |
| Reference                            |          | [22     | 05.08629]  | [2102.11538] |

✓ All PMTs produced, tested. Waterproof potting applied.

✓ 12.6k most efficient NNVT PMTs are selected for the central detector.  $\hookrightarrow$  others will be installed in the Water Cherenkov detector.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

#### PHOTOMULTIPLIER TUBES





|                                      |          | Large   | e PMT,     | Small PMT,   |
|--------------------------------------|----------|---------|------------|--------------|
| Diameter                             |          | 20      | -inch      | 3-inch       |
| Producer                             | Har      | namatsu | NNVT       | HZC          |
| Quantity                             |          | 5000    | 15'012     | 25'600       |
| Charge Collection                    |          | Dynode  | MCP        | Dynode       |
| Photon Detection Efficiency,         | %        | 28.50   | 30.10      | 25.00        |
| Mean Dark Count Rate,                | (Bare)   | 15.3    | 49.3       | 0.5          |
| kHz                                  | (Potted) | 17.0    | 31.2       | 0.5          |
| Transit Time Spread ( $\sigma$ ), ns |          | 1.3     | 7          | 1.6          |
| Dynamic range for 0-10 MeV           | /        | [0,     | 100], p.e. | [0, 2], p.e. |
| Coverage, %                          |          | 7!      | 5.00       | 3.00         |
| Reference                            |          | [22     | 05.08629]  | [2102.11538] |

✓ All PMTs produced, tested. Waterproof potting applied.

✓ 12.6k most efficient NNVT PMTs are selected for the central detector.  $\hookrightarrow$  others will be installed in the Water Cherenkov detector.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●目目 のへで



[2007.00314]



5000  $m^3$  LAB tank

Maxim Gonchar (JINR)

もうない 単純 ふかく ホット (日本)

July 13, 2022 14, / 28



[2007.00314]





5000  $m^3$  LAB tank

 $AI_2O_3$ : remove particles



[2007.00314]

# Done



5000  $m^3$  LAB tank

Al<sub>2</sub>O<sub>3</sub>: remove particles Dis







[2007.00314]









5000  $m^3$  LAB tank

Al<sub>2</sub>O<sub>3</sub>: remove particles Distillation: remove radioactive impurities

Add 2.5 g/L PPO and 3 mg/L bis-MSB



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶









Al<sub>2</sub>O<sub>3</sub>: remove particles Distillation: remove radioactive impurities



Add 2.5 g/L PPO and 3 mg/L bis-MSB



Water extraction: remove radioactive impurities



[2007.00314]







Al<sub>2</sub>O<sub>3</sub>: remove particles Distillation: remove radioactive impurities



Add 2.5 g/L PPO and 3 mg/L bis-MSB



Gas stripping: remove Rn and O<sub>2</sub>

Water extraction: remove radioactive impurities

#### LIQUID SCINTILLATOR





## OSIRIS: Online Scintillator Internal Radioactivity Investigation System $\longrightarrow$

[2103.16900]



・ロト・日本・山田・山田・シック・

#### $OSIRIS: on {\tt dim} {\tt s} {\tt cintillator Internal Radioactivity Investigation System}$



[2103.16900]

#### Goals

- Monitor LS during the filling of JUNO
- U/Th via tagging Bi-Po chains
  - Reactor baseline:  $10^{-15} \text{ g/g}$
  - ► Solar baseline:  $10^{-17} \, \mathrm{g/g}$
- Other isotopes measurement:

15% LS

$$\sim$$
 few days  $\sim$  2-3 weeks  $^{14}\mathrm{C},~^{210}\mathrm{Po},~^{85}\mathrm{Kr}.$ 



<sup>18</sup> t LS, flow-through

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●目目 のへで

#### $OSIRIS: on line \mathbf{s}_{cintillator Internal Radioactivity Investigation System}$



#### Goals

- Monitor LS during the filling of JUNO
- U/Th via tagging Bi-Po chains
  - Reactor baseline:  $10^{-15} \text{ g/g}$
  - ► Solar baseline:  $10^{-17} \text{ g/g}$
- Other isotopes measurement:

#### Detector

• 64 20-inch PMTs:

•  $\sigma_E = 6\%$  at 1 MeV:

15% LS

 $\sim$  few days  $\sim$  2-3 weeks  $^{14}C$  ,  $^{210}Po$  ,  $^{85}Kr$  .

coverage 9% 280 p.e./MeV



18 t LS, flow-through

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへの

#### OSIRIS: on line scintillator internal Radioactivity investigation system



#### Goals

- Monitor LS during the filling of JUNO
- U/Th via tagging Bi-Po chains
  - Reactor baseline:  $10^{-15} \text{ g/g}$
  - ► Solar baseline:  $10^{-17}$  g/g
- Other isotopes measurement:

#### Detector

- 64 20-inch PMTs:
- $\sigma_E = 6\%$  at 1 MeV:

#### Status

- Expect to start commissioning in July.
- Possible upgrade to Serappis: measurement of solar pp neutrinos with 3.5% precision in 5 years

#### 15% LS

$$\sim$$
 few days  $\sim$  2-3 weeks  $^{14}C$  ,  $^{210}Po$  ,  $^{85}Kr$  .

- 0 /

18 t LS, flow-through



#### [2103.16900]











#### Goals

- Energy scale uncertainty <1%
- Reaching desired  $\sigma_E = 3\%$  at 1 MeV

#### Methods

- Cable Loop System, CLS 2d
- Guide Tube, GT 1d
- Remotely Operated under-LS Vehicle, ROV 3d







#### Goals

- Energy scale uncertainty <1%
- Reaching desired  $\sigma_E = 3\%$  at 1 MeV

#### Methods

- Cable Loop System, CLS 2d
- Guide Tube, GT 1d
- Remotely Operated under-LS Vehicle, ROV 3d

#### Redundancy

- Multiple sources
- Multiple coatings:
  - $\hookrightarrow$  shadowing effect  ${<}0.15\%$
- Cross calibration with small PMTs

A = > 4







#### Goals

- Energy scale uncertainty <1%
- Reaching desired  $\sigma_E = 3\%$  at 1 MeV

#### Methods

- Cable Loop System, CLS
- Guide Tube, GT
- Remotely Operated under-LS Vehicle, ROV

#### Redundancy

- Multiple sources
- Multiple coatings:
  - $\hookrightarrow$  shadowing effect  ${<}0.15\%$
- Cross calibration with small PMTs





ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

(illustrative)

Status PMT LS OSIRIS Calib Res

#### ENERGY RESOLUTION

Parametrization

 $\sigma$ 

$$a^2$$
  $b^2$   $c^2$ 

$$\frac{d}{dE_{\mathsf{vis}}} = \sqrt{\frac{d}{dE_{\mathsf{vis}}} + \frac{d}{1}} + \frac{d}{dE_{\mathsf{vis}}^2}$$

- Parameter a photon statistics
- Parameter *b*:
  - Scintillation quenching
  - Contribution of Cherenkov light
  - Non-uniformity and reconstruction
- Parameter c:
  - $\gamma$ s related to annihilation
  - PMT Dark Noise





#### ENERGY RESOLUTION

Parametrization

#### (illustrative)

$$rac{\sigma}{E_{ ext{vis}}} = \sqrt{rac{a^2}{E_{ ext{vis}}} + rac{b^2}{1} + rac{c^2}{E_{ ext{vis}}^2}}$$

#### Estimation

- JUNO resolution: 2.9% at 1 MeV
- TAO: 1.9% at 1 MeV
- Goal: combined analysis of JUNO+TAO data







Introduction Experiment Status Physics Conclusion

\* ③ \* 9 & p \*s

#### Sensitivity to Neutrino Mass Ordering



#### Signal and background

- Inverse beta decay:  $\overline{\nu}_e + p \rightarrow e^+ + n$  $\hookrightarrow$  double coincidence
- Signal: 47  $\overline{\nu}_e/\mathrm{day}$ , backgrounds: 9%


## SENSITIVITY TO NEUTRINO MASS ORDERING





Impact of systematics:





## SENSITIVITY TO NEUTRINO MASS ORDERING





#### Impact of systematics:



- Paper under preparation.
- Combination of reactor and atmospheric channels within JUNO is investigated.

・ロット (雪) (山) (山)

[2008.11280], JUNO+IceCube [1911.06745]

## JUNO and neutrino oscillation parameters

- Percent precision for  $\Delta m^2_{21}/\Delta m^2_{31}$ : 100 days
- Few permille level for  $\Delta m^2_{21}/\Delta m^2_{31}/\sin^2 2\theta_{12}$ : 6 years

 ✓ Order of magnitude improvement over existing constraints.

<ロ> <四> <四> <回> <回> <回> <回> <回> <回> <回> <回> <回> <0<0</p>



\* ③ \* 🎓 t p \*s

## JUNO AND NEUTRINO OSCILLATION PARAMETERS

• Percent precision for  $\Delta m^2_{21}/\Delta m^2_{31}$ : 100 days

• Few permille level for  $\Delta m_{21}^2 / \Delta m_{31}^2 / \sin^2 2\theta_{12}$ : 6 years



 (2204.13249)
 ✓ Order of magnitude improvement over existing constraints.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶



\* ③ \* 🎓 t p \*s

## JUNO AND NEUTRINO OSCILLATION PARAMETERS

• Percent precision for  $\Delta m^2_{21}/\Delta m^2_{31}$ : 100 days

• Few permille level for  $\Delta m_{21}^2 / \Delta m_{31}^2 / \sin^2 2\theta_{12}$ : 6 years





 Order of magnitude improvement over existing constraints.

## JUNO and neutrino oscillation parameters



• Percent precision for  $\Delta m^2_{21}/\Delta m^2_{31}$ : 100 days

• Few permille level for  $\Delta m_{21}^2 / \Delta m_{31}^2 / \sin^2 2\theta_{12}$ : 6 years



 Order of magnitude improvement over existing constraints.



✓ Almost no correlation between measured parameters.

・ロット 全部 マイロット

## INTERMEDIATE ENERGY SOLAR NEUTRINOS: <sup>7</sup>Be, PEP, CNO



#### Detection

- Signal:  $\nu_e$  elastic scattering off  $e^-$
- Expected rate:
  - ▶ <sup>7</sup>Be  $\sim 130 \; \text{ES/day}$
  - $\sim 17~{
    m ES/day}$ pep  $\sim 16~{\sf ES/day}$
  - CNO
- Limiting factors: LS purity, cosmic ray related background
- Baseline <sup>238</sup>U/<sup>232</sup>Th contamination:

 $10^{-16}\,{
m g/g}$ 

< 日 > < 同 > < 回 > < 回

🛨 😳 🗶 🐆 8 p 🛣s





#### Detection

- Signal:  $\nu_e$  elastic scattering off  $e^-$
- Expected rate:
  - $ightarrow 
    m ^7Be 
    m \sim 130~ES/day$
  - $\blacktriangleright$  pep  $\sim 17~{\sf ES/day}$
  - $\blacktriangleright$  CNO  $\sim 16$  ES/day
- Limiting factors: LS purity, cosmic ray related background
- Baseline  ${
  m ^{238}U/^{232}Th}$  contamination:



Maxim Gonchar (JINR)

ELE DQC

イロト 不得 トイヨト イヨト

 $10^{-16}\,{
m g/g}$ 

\* 🗘 \* 🎘 ö p \*s





Maxim Gonchar (JINR)

#### Detection

- Signal:  $\nu_e$  elastic scattering off  $e^-$
- Expected rate:
  - $ightarrow 
    m ^7Be 
    m \sim 130 \; ES/day$

 $10^{-16}\,{
m g/g}$ 

ELE NOR

203 / 28

July 13, 2022

・ロット (雪) (山) (山)

- $\blacktriangleright$  pep  $\sim 17~{\sf ES/day}$
- $\blacktriangleright$  CNO  $\sim$  16 ES/day
- Limiting factors: LS purity, cosmic ray related background
- Baseline  $^{238}\mathrm{U}/^{232}\mathrm{Th}$  contamination:



\* O \* \* to \*.

## INTERMEDIATE ENERGY SOLAR NEUTRINOS: <sup>7</sup>Be, pep, CNO



#### Detection

• Signal:  $\nu_e$  elastic scattering off  $e^-$ 

Exposure [kt y]

Time [v]

JUNO

• Expected rate:

20

pep rate relative uncertainty [%]

- ▶ <sup>7</sup>Be  $\sim 130 \; {\sf ES/day}$
- $\sim 17~{
  m ES/day}$ pep  $\sim 16~{
  m ES/day}$
- CNO
- Limiting factors: LS purity, cosmic ray related background

10

Baseline  ${}^{238}\text{U}/{}^{232}\text{Th}$  contamination:

Borexino-like

dool Baseline

- Borevino resul

8





\* 🗘 \* 🐆 č p \*s

## OSCILLATION PHYSICS WITH SOLAR <sup>8</sup>B $\nu_e$



#### Oscillations

•  $^8\mathrm{B}~
u_e$  are sensitive to the matter effect: Day/Night asymmetry



ELE DQC

◆ロト < 回下 < 三下 < 三下</p>



\* 🗘 \* 🎠 t p \*s

## OSCILLATION PHYSICS WITH SOLAR <sup>8</sup>B $\nu_e$



#### Oscillations

•  $^8\mathrm{B}~
u_e$  are sensitive to the matter effect: Day/Night asymmetry

### Detection

- Elastic scattering off  $e^ \sim \! 16 \; 
  u_e/{
  m day}$
- Neutral current on  ${
  m ^{13}C}$   $\sim$ 73.8  $u_e/{
  m year}$
- Charged current on  $^{13}{
  m C}$   $\sim$ 64.7  $u_e/{
  m year}$
- Limiting factors: LS purity, cosmic ray related background
- Baseline  ${}^{238}\mathrm{U}/{}^{232}\mathrm{Th}$  contamination:  $10^{-16}\,\mathrm{g/g}$

ELE DOG

日本人間本人間本人間本

## OSCILLATION PHYSICS WITH SOLAR <sup>8</sup>B $\nu_e$



#### Oscillations

•  $^8\mathrm{B}~
u_e$  are sensitive to the matter effect: Day/Night asymmetry

### Detection

- Elastic scattering off  $e^ \sim \! 16 \; 
  u_e/{
  m day}$
- Neutral current on  $^{13}{
  m C}$   $\sim$ 73.8  $u_e/{
  m year}$
- Charged current on  $^{13}{
  m C}$   $\sim$  64.7  $u_e/{
  m year}$
- Limiting factors: LS purity, cosmic ray related background
- Baseline  ${}^{238}\mathrm{U}/{}^{232}\mathrm{Th}$  contamination:  $10^{-16}\,\mathrm{g/g}$

## Data and analysis

- Events binned vs zenith angle  $\cos \theta_z$  and  $\nu_e$  energy
- 5%,  $\sim$  9% and  $\sim$  22% sensitivity to  $^8{\rm B}$  flux, sin  $^22\theta_{12}$  and  $\Delta m^2_{21}.$

ELE DOG

・日本 ・ 雪 ・ ・ 田 ・



\* 🕲 \* 🎘 ö p \*s

## Core collapse SuperNova explosion





- Expect a few SuperNova explosions per century
- $\sim 10^4$  events in 10 s

#### On the plot

- SN @10 kpc
- pre-SN @0.2 kpc
- Reactor IBD background

\* 🛈 \* 🎓 t p \*s

## Core collapse SuperNova explosion





#### On the plot

- SN @10 kpc
- pre-SN @0.2 kpc
- Reactor IBD background

- Expect a few SuperNova explosions per century
- $\sim 10^4$  events in 10 s

#### Detection

- Dedicated trigger: 100 keV threshold
- Expected statistics:
  - ► 5000 IBD
  - ► 2000 ES off proton
  - 300 ES off electron

- ▶ 300 ν<sup>12</sup>C NC
- ▶ 200 ν<sup>12</sup>C CC
- Negligible background

イロト 不得 トイヨト イヨト

\* 😳 \star 🐆 t p \*s

## Core collapse SuperNova explosion





#### On the plot

- SN @10 kpc
- pre-SN @0.2 kpc
- Reactor IBD background

- Expect a few SuperNova explosions per century
- $\sim 10^4$  events in 10 s

#### Detection

• Dedicated trigger: 100 keV threshold

#### Goals

- Measure: flavor content, time evolution, flux, energy spectrum
- Study: stellar parameters, SN physics, late stage stellar evolution
- Constrain  $m_{\nu} < (0.83 \pm 0.24) \, {
  m eV}$  @90% CL @10 kpc [1412.7418]
- Multi-messenger trigger

\* ③ \* 🎓 & p \*s

## DIFFUSE SUPERNOVA NEUTRINO BACKGROUND





[2205.08830]

イロト イポト イヨト イヨト

\* ③ \* 🎋 & p \*s

## DIFFUSE SUPERNOVA NEUTRINO BACKGROUND



#### DSNB

• Integrated signal of all the SuperNova explosions in the universe

< 口 > < 四 >

A = > 4

• Not yet observed

### Detection

- Signal: inverse beta decay
- Expected rate: 2–4  $\overline{\nu}_e$ /year
- Energies: E>12 MeV, above reactor IBD

[2205 08830

\* ③ \* 🎋 & p \*s

## DIFFUSE SUPERNOVA NEUTRINO BACKGROUND



### DSNB

- Integrated signal of all the SuperNova explosions in the universe
- Not yet observed

### Detection

- Signal: inverse beta decay
- Expected rate: 2–4  $\overline{\nu}_e$ /year
- Energies: E>12 MeV, above reactor IBD

### Discovery potential

- $5\sigma$  in 10 years
- $3\sigma$  in 3 years

JUNO



• = • •

[2205 08830

\* 😳 \* 🐆 č p \*s

### OSCILLATION PHYSICS WITH ATMOSPHERIC $\nu_{\mu}/\overline{\nu}_{\mu}$



[2103.09908][2104.02565]

E<sup>2</sup> Φ [GeV cm<sup>-2</sup> s<sup>-1</sup> sr<sup>1</sup> JUNO - This work (5 yrs) v. Super-Kamiokande 2016 v. 10-Frejus 1995 v., HKKM14 v., Flux (w/o osc.) HKKM14 v. Flux (w/ osc.) 10-JUNO - This work (5 yrs) v. Super-Kamiokande 2016 v. Fréius 1995 v. ----- HKKM14 v, Flux (w/o osc.) HKKM14 v. Flux (w/ osc.) 10-5 1.5 -0.5log (E / GeV)

#### Oscillations

• Matter effect:  $\theta_z$  dependence

July 13, 2022

24, / 28

\* 😳 \* 🗭 t p 🛠 s

### OSCILLATION PHYSICS WITH ATMOSPHERIC $\nu_{\mu}/\overline{\nu}_{\mu}$



#### Oscillations

• Matter effect:  $\theta_z$  dependence

#### Detection

- Primary channel:  $\nu_{\mu}/\overline{\nu}_{\mu}$  CC
- Expected statistics, 200 kton-years: 1233/1035 events

イロン 不通 とうせい うけ

• Limiting factors: angular resolution / PID purity

🛠 😳 🗶 🐆 t p 😤 s

## OSCILLATION PHYSICS WITH ATMOSPHERIC $\nu_{\mu}/\overline{\nu}_{\mu}$



### Oscillations

• Matter effect:  $\theta_z$  dependence

#### Detection

- Primary channel:  $\nu_{\mu}/\overline{\nu}_{\mu}$  CC
- Expected statistics, 200 kton-years: 1233/1035 events
- Limiting factors: angular resolution / PID purity

### Data and analysis

• Events binned vs zenith angle  $\cos \theta_z$  (fine)

and  $\nu$  energy (coarse)

- $\sim 1\sigma$  sensitivity to ordering in 10 years
- Potential: combination with reactor analysis

[2103.09908][2104.02565]

## Geo-neutrinos



## Source: ${}^{238}\mathrm{U}/{}^{232}\mathrm{Th}$ from Earth's crust and mantle

- $^{238}\text{U} \rightarrow ^{206}\text{Pb} + 8\alpha + 6e^- + 6\overline{\nu}_e$
- $^{232}$ Th  $\rightarrow ^{208}$ Pb +  $6\alpha + 4e^- + 4\overline{\nu}_e$
- ${}^{\bullet}\,$  there is also  ${}^{40}{\rm K},$  which is below IBD threshold of 1.8 MeV
- 500 km of crust around JUNO contributes > 50% of signal
- Local geological studies: [1901.01945] [1903.11871]

< ∃ >

2104 0256



#### 🖞 😳 🗶 🎢 👌 p. 🛣 s

## Geo-neutrinos



## Source: $^{238}\mathrm{U}/^{232}\mathrm{Th}$ from Earth's crust and mantle

- $\bullet\,$  500 km of crust around JUNO contributes >50% of signal
- Local geological studies: [1901.01945] [1903.11871]

#### Data

- KamLAND: 175  $\overline{\nu}_e$  in 8 years
- Borexino: 53  $\overline{\nu}_e$  in 9 years
- JUNO: 400  $\overline{\nu}_e$ /year

JUNO

[2205.14934] [1909.02257] (40 TNU/year)



A = > 4

[2104.02565

## Geo-neutrinos



## Source: $^{238}\mathrm{U}/^{232}\mathrm{Th}$ from Earth's crust and mantle

• 500 km of crust around JUNO contributes > 50% of signal

A = > 4

• Local geological studies: [1901.01945] [1903.11871]

### Data

- KamLAND: 175  $\overline{\nu}_e$  in 8 years
- Borexino: 53  $\overline{\nu}_e$  in 9 years
- JUNO: 400  $\overline{\nu}_e$ /year

### Goals

- 5% geo- $\overline{\nu}_e$  measurement in 10 years
- Measure: Th/U mass ratio

JUNO

• Study: radiogenic heat production

[2104 02565

\* ③ \* 外 č p \*s

### PROTON DECAY





#### Signature

• 
$$p \rightarrow \nu + K^+ \rightarrow \nu_\mu + \mu^+ \rightarrow \overline{\nu}_\mu + \nu_e + e^+$$
 GUT

• 
$$\boldsymbol{p} \to \nu + \pi^+ \to \nu_\mu + \mu^+ \to \overline{\nu}_\mu + \nu_e + e^+$$

• 
$$p 
ightarrow \mu^+ \mu^+ \mu^-$$
 under investigation



SUSY

イロト イポト イヨト イヨト

[2104.02565]

\* ③ \* 🎓 ö p \*s

## PROTON DECAY



#### Signature

• 
$$\boldsymbol{p} \rightarrow \nu + \boldsymbol{K^+} \rightarrow \nu_{\mu} + \boldsymbol{\mu^+} \rightarrow \overline{\nu}_{\mu} + \nu_e + \boldsymbol{e^+}$$
 GUT

• 
$$\boldsymbol{p} \rightarrow \nu + \pi^+ \rightarrow \nu_\mu + \mu^+ \rightarrow \overline{\nu}_\mu + \nu_e + e^+$$

• 
$$p 
ightarrow \mu^+ \mu^+ \mu^-$$
 under investigation

#### Data

- Signal: three-fold coincidence
- Backgrounds: atmospheric neutrinos, cosmic muons

(日)

[2104.02565



SUSY

\* ③ \* 🌪 č p \*s

## PROTON DECAY





Maxim Gonchar (JINR)

#### Signature

• 
$$p \rightarrow \nu + K^+ \rightarrow \nu_\mu + \mu^+ \rightarrow \overline{\nu}_\mu + \nu_e + e^+$$
 GUT

• 
$$\boldsymbol{p} \to \nu + \pi^+ \to \nu_\mu + \mu^+ \to \overline{\nu}_\mu + \nu_e + e^+$$

• 
$$p 
ightarrow \mu^+ \mu^+ \mu^-$$
 under investigation

#### Data

- Signal: three-fold coincidence
- Backgrounds: atmospheric neutrinos, cosmic muons

• = • •

### Sensitivity

•  $8.34\times10^{33}$  years 90% CL in 10 years



SUSY

[21.04.02565

\* ③ \* 为 \* p \*s

## STERILE NEUTRINO SEARCH WITH TAO



#### Primary goal

• Reference reactor  $\overline{\nu}_e$  spectrum with  $\sigma = 2\%$  at 1 MeV.



\* ③ \* 为 t p \*;

## STERILE NEUTRINO SEARCH WITH TAO



### Primary goal

• Reference reactor  $\overline{\nu}_e$  spectrum with  $\sigma = 2\%$  at 1 MeV.

### Oscillations: reactor at 30 m

- Relevant range:  $0.5\,{
  m eV}^2 \lesssim \Delta m^2_{41} \lesssim 5\,{
  m eV}^2$
- $\bullet\ \sim$  large L counterbalanced with high energy resolution



\* ③ \* 为 t p \*;

## STERILE NEUTRINO SEARCH WITH TAO



### Primary goal

• Reference reactor  $\overline{\nu}_e$  spectrum with  $\sigma = 2\%$  at 1 MeV.

### Oscillations: reactor at 30 m

- Relevant range:  $0.5\,{
  m eV}^2 \lesssim \Delta m^2_{41} \lesssim 5\,{
  m eV}^2$
- $\bullet\ \sim$  large L counterbalanced with high energy resolution

### Detection

- Inverse beta decay with nGd tag
- Expected rate:  ${\sim}2000~\overline{
  u}_e/{\rm day}$



\* ③ \* st & p \*

## STERILE NEUTRINO SEARCH WITH TAO



### Primary goal

• Reference reactor  $\overline{\nu}_e$  spectrum with  $\sigma = 2\%$  at 1 MeV.

### Oscillations: reactor at 30 m

- Relevant range:  $0.5\,{
  m eV}^2 \lesssim \Delta m^2_{41} \lesssim 5\,{
  m eV}^2$
- $\bullet\ \sim$  large L counterbalanced with high energy resolution

### Detection

- Inverse beta decay with nGd tag
- Expected rate:  ${\sim}2000~\overline{
  u}_e/{\rm day}$

## Data and analysis

- Events, finely binned vs energy
- Simultaneous fit: TAO's 4 virtual subdetectors
- Probe Neutrino-4 best-fit:  $\Delta m^2_{41}$ =7.25 eV<sup>2</sup>, sin<sup>2</sup> 2 $\theta_{14}$ =0.26



## JUNO SUMMARY



JUNO — a liquid scintillator detector with an unprecedented size and energy resolution.

### Rich physics programme

- Reactor  $\overline{\nu}_{e}$  at short and large baseline.
- Solar neutrinos from  ${}^{7}\text{Be}$ , pep, CNO and  ${}^{8}\text{B}$ . Possibly, pp.
- Atmospheric  $\nu_{\mu}/\overline{\nu}_{\mu}$  and  $\nu_{e}/\overline{\nu}_{e}$ .
- Detector completion in 2023; SuperNova neutrinos and Diffuse SuperNova Neutrino Background.
- Geo-neutrinos
- Proton decay.
- Other topics:
  - Search for dark matter.
  - Study PMNS matrix unitarity.
  - Probe Lorentz invariance.

- Search for physics beyond standard model and exotic particles.
- And more...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のへの

# Thank you for your attention!

Spare slides:

- 6 JUNO
  - Collaboration
- 7 Physics
  - Reactor
  - Solar
  - Atmospheric

## 8 IBD SELECTION

- Backgrounds
- Signal

July 13, 2022

29 / 28

Collaboration

## JUNO COLLABORATION



| Country | Institute                      | Country | Institute               | Country      | Institute              |
|---------|--------------------------------|---------|-------------------------|--------------|------------------------|
| Armenia | Yerevan Physics Institute      | China   | IMP-CAS                 | Germany      | U. Mainz               |
| Belgium | Universite libre de Bruxelles  | China   | SYSU                    | Germany      | U. Tuebingen           |
| Brazil  | PUC                            | China 🔮 | Tsinghua U.             | Italy        | INFN Catania           |
| Brazil  | UEL                            | China   | UCAS                    | Italy        | INFN di Frascati       |
| Chile / | PCUC                           | China 📨 | USTC                    | Italy        | INFN-Ferrara           |
| Chile   | SAPHIR                         | China   | Us of South China       | Italy        | INFN-Milano            |
| China 🥄 | BISEE                          | China   | Wu Yi U.                | Italy        | INFN-Milano Bicocca    |
| China   | Beijing Normal U.              | China   | Wuhan U.                | Italy        | INFN-Padoya            |
| China   | CAGS                           | China   | Xi'an JT U.             | Italy        | INFN-Perugia           |
| China   | ChongQing University           | China   | Xiamen University       | Italy        | INFN-Roma 3            |
| China   | CIAE                           | China   | Zhengzhou U.            | Latvia       | IECS                   |
| China   | DGUT                           | China   | NUDT                    | Pakistan     | PINSTECH (PAEC)        |
| China   | ECUST                          | China   | CUG-Beijing             | Russia       | INR Moscow             |
| China   | Guangxi U.                     | China   | ECUT-Nanchang City      | Russia       | JINR                   |
| China   | Harbin Institute of Technology | Croatia | UZ/RBI                  | Russia       | MSU                    |
| China   | IHEP                           | Czech   | Charles U.              | Slovakia     | FMPICU                 |
| China   | Jilin U.                       | Finland | University of Jyvaskyla | Taiwan-China | National Chiao-Tung U. |
| China   | Jinan U.                       | France  | IJCLab Orsay            | Taiwan-China | National Taiwan U.     |
| China   | Nanjing U.                     | France  | LP2i Bordeaux           | Taiwan-China | National United U.     |
| China   | Nankai U.                      | France  | CPPM Marseille          | Thailand     | NARIT                  |
| China   | NCEPU                          | France  | IPHC Strasbourg         | Thailand     | PPRLCU                 |
| China   | Pekin U                        | France  | Subatech Nantes         | Thailand     | SUT                    |
| China   | Shandong U.                    | Germany | RWTH Aachen U.          | USA          | UMD-G                  |
| China   | Shanghai JT U.                 | Germany | TUM                     | USA          | UC Irvine              |
| China   | IGG-Beijing                    | Germany | U. Hamburg              |              |                        |
| China   | IGG-Wuhan                      | Germany | FZJ-IKP                 |              |                        |

#### 76 institutions from 18 countries

Maxim Gonchar (JINR)

1

(日) (日) (日) (日) (日) (日) (日) (日)

Spares JUNO Physics IBD

Reactor Solar Atmospheric

## SENSITIVITY TO NEUTRINO MASS ORDERING



| Preliminary!                                    | Rate | Uncertainty, % |            |  |
|-------------------------------------------------|------|----------------|------------|--|
| Events                                          | /day | rate           | shape      |  |
| Reactor IBD                                     | 47   |                |            |  |
| $\operatorname{Geo-}\overline{\nu}_e$           | 1.2  | 30             | 5          |  |
| Accidentals                                     | 0.8  | 1              | negligible |  |
| Fast neutrons                                   | 0.1  | 100            | 20         |  |
| $^{8}\mathrm{He}/^{9}\mathrm{Li}$               | 0.8  | 20             | 10         |  |
| ${}^{13}\mathrm{C}(\alpha, n){}^{16}\mathrm{O}$ | 0.05 | 50             | 50         |  |
| Global reactors                                 | 1.0  | 2              | 5          |  |
| Atmospheric $\overline{\nu}_e$                  | 0.16 | 50             | 50         |  |


# Solar <sup>8</sup>B $\nu_e$



• No external constraints on the  ${}^8\mathrm{B}$  flux.

Reactor Solar Atmospheric

## Day/Night effect with solar <sup>8</sup>B $\nu_e$



## Expected $\nu_e$ spectrum from <sup>8</sup>B



## Day/Night asymmetry



Maxim Gonchar (JINR)

July 13, 2022 33 / 28

JUNO

Reactor Solar Atmospheric

## Atmospheric neutrino oscillations





#### NMO sensitivity vs time



 Atmospheric  $\nu_{\mu}/\nu_{e}$  spectra [2103.09908]

  $\leftarrow \square \vdash \leftarrow \blacksquare \vdash \leftarrow \blacksquare \vdash \_ \blacksquare \vdash \frown \bigcirc \bigcirc \bigcirc \bigcirc$  

 July 13, 2022
 34 / 28

## Neutrino background sources

- Nearby reactors with  $L > 52.5 \,\mathrm{km}$ : Daya Bay, Ling Ao
- World reactors
- Geo- $\overline{\nu}_e$
- Atmospheric- $\overline{\nu}_e$

#### Non-neutrino backgrounds sources





treated as signal

## Neutrino background sources

- Nearby reactors with  $L > 52.5 \,\mathrm{km}$ : Daya Bay, Ling Ao
- World reactors
- Geo- $\overline{\nu}_e$
- Atmospheric- $\overline{\nu}_e$

#### Non-neutrino backgrounds sources



treated as signal

## Neutrino background sources

- Nearby reactors with  $L > 52.5 \,\mathrm{km}$ : Daya Bay, Ling Ao
- World reactors
- Geo- $\overline{\nu}_e$
- Atmospheric- $\overline{\nu}_e$

#### Non-neutrino backgrounds sources



treated as signal

## Neutrino background sources

- Nearby reactors with  $L > 52.5 \,\mathrm{km}$ : Daya Bay, Ling Ao
- World reactors
- Geo- $\overline{\nu}_e$
- Atmospheric- $\overline{\nu}_e$

### Non-neutrino backgrounds sources





## Neutrino background sources

- Nearby reactors with  $L>52.5\,\mathrm{km}$ : Daya Bay, Ling Ao
- World reactors
- Geo- $\overline{\nu}_e$
- Atmospheric- $\overline{\nu}_e$

### Non-neutrino backgrounds sources





## Neutrino background sources

- Nearby reactors with  $L > 52.5 \,\mathrm{km}$ : Daya Bay, Ling Ao
- World reactors
- Geo- $\overline{\nu}_e$
- Atmospheric- $\overline{\nu}_e$

### Non-neutrino backgrounds sources





## Neutrino background sources

- Nearby reactors with  $L > 52.5 \,\mathrm{km}$ : Daya Bay, Ling Ao
- World reactors
- Geo- $\overline{\nu}_e$
- Atmospheric- $\overline{\nu}_e$

### Non-neutrino backgrounds sources





### Neutrino background sources

- Nearby reactors with  $L > 52.5 \,\mathrm{km}$ : Daya Bay, Ling Ao
- World reactors
- Geo- $\overline{\nu}_e$
- Atmospheric- $\overline{\nu}_e$

#### Non-neutrino backgrounds sources





treated as signal

きょう しょうしょう しょうしょう

## Neutrino background sources

- Nearby reactors with  $L>52.5\,\mathrm{km}$ : Daya Bay, Ling Ao
- World reactors
- Geo- $\overline{\nu}_e$
- Atmospheric- $\overline{\nu}_e$

### Non-neutrino backgrounds sources





## Neutrino background sources

- Nearby reactors with  $L > 52.5 \,\mathrm{km}$ : Daya Bay, Ling Ao
- World reactors
- Geo- $\overline{\nu}_e$
- Atmospheric- $\overline{\nu}_e$

### Non-neutrino backgrounds sources





## Neutrino background sources

- Nearby reactors with  $L > 52.5 \,\mathrm{km}$ : Daya Bay, Ling Ao
- World reactors
- Geo- $\overline{\nu}_e$
- Atmospheric- $\overline{\nu}_e$

#### Non-neutrino backgrounds sources





treated as signal

■ ト イ ヨ ト ヨ コ つ へ (~ July 13, 2022 35<sub>11</sub> / 28

### Neutrino background sources

- Nearby reactors with  $L > 52.5 \,\mathrm{km}$ : Daya Bay, Ling Ao
- World reactors
- Geo- $\overline{\nu}_e$
- Atmospheric- $\overline{\nu}_e$

#### Non-neutrino backgrounds sources





treated as signal

## Neutrino background sources

- Nearby reactors with  $L > 52.5 \,\mathrm{km}$ : Daya Bay, Ling Ao
- World reactors
- Geo- $\overline{\nu}_e$
- Atmospheric- $\overline{\nu}_e$

## Non-neutrino backgrounds sources





treated as signal

July 13, 2022 35<sub>13</sub> / 28

## Neutrino background sources

- Nearby reactors with  $L > 52.5 \,\mathrm{km}$ : Daya Bay, Ling Ao
- World reactors
- Geo- $\overline{\nu}_e$
- Atmospheric- $\overline{\nu}_e$

## Non-neutrino backgrounds sources



Maxim Gonchar (JINR)



treated as signal

July 13, 2022 3514 / 28

ELE OQO

Backgrounds Signal



## INVERSE BETA DECAY (IBD) AND SELECTION CRITERIA



▲□▶▲督▶▲≣▶▲≣▶ 差世 のへで

Backgrounds Signal





Backgrounds Signal





Backgrounds Signal



Backgrounds Signal



Backgrounds Signal

