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Screening

Screening is the damping of fields caused by the presence of
moving charges

Screening is an important property of charge-carrying fluids
(plasmas)

Even though the interaction between any two test particles can
decrease with distance, the average number of plasma particles
between the test particles is roughly proportional to the square
of the distance

As a result, a charge fluctuation at any given point has
non-negligible effects at large distances

This distance is characterized by a length λD called the Debye
radius or by its inverse mD = 1/λD called the Debye mass
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Screening
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The QCD phase diagram
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CEP signature: Non-monotonic behavior of cumulant
ratios as a function of collision energy
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STAR and HADES recent results
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QCD: The theory of strong interactions
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Nf∑
i=1
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)
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µ(τσ)

ab

a, b run from 1 to Nc , α, β, σ run from 1 to N2
c − 1.

• Gauge theory with the local symmetry group SU(Nc). (In the real
world Nc = 3).

• The fundamental fields are the quarks (matter fields) and gluons
gauge fields.

• In the limit that each one of the Nf quark fields is massless
(mi = 0), QCD shows chiral symmetry.
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The (bottom of the) Mexican ���HHHhat glass potential
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Linear sigma model: Spontaneous chiral symmetry
breaking
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Vacuum structure from partition function in terms of the
order parameter v within a volume Ω at temperature T

Z(v) ∼ exp
{
−ΩV tree(v)/T

}
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With one-loop thermal corrections

V eff = V tree + V b

V tree(v) = −a2
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Troublesome when m2
b becomes 0 or even negative
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Ideal gas with classical hadron thermodynamics

• Consider an ideal gas of identical neutral scalar particles of mass m0

contained in a box volume Ω. To simplify assume Boltzmann
statistics. The partition function is given by

Z(T ) =
∑
N

1
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ω(T ) = ϵ(T )/n(T ) ≃ 3T average energy per particle
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Chiral transition and hadronization

• Hadron multiplicities established very close to the phase boundary.

Statistical model (Hadron Resonance Gas model)

nj =
gj
2π2

∫ ∞

0
p2dp

[
exp

{√
p2 +M2

j /Tch − µch

}
± 1

]−1

• From the hadron side, abundances due to multi-particle collisions
whose importance is enhanced due to high particle density in the
phase transition region. Collective phenomena play an important
role.

• Since the multi-particle scattering rates fall-off rapidly, the
experimentally determined chemical freeze-out is a good
measure of the phase transition temperature.
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Chiral transition and hadronization
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Analysis tools: Fluctuations of conserved quantities

• A powerful tool to experimentally locate the CEP is the study of
event-by-event fluctuations in relativistic heavy-ion collisions

Fluctuations are sensitive to the early thermal properties of the
created medium. To locate the CEP, one looks for

fluctuations that deviate from the ones that correspond
to the HRGM
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Analysis tools: Cumulant generating function

Cumulants higher than second order vanish for a Gaussian
probability distribution, non-Gaussian fluctuations are signaled by

non-vanishing higher order cumulants

Two important higher order moments are the skewness S and the
curtosis κ. The former measures the asymmetry of the distribution

function whereas the latter measures its sharpness
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Cumulants

For the HRGM,
ratios of cumulatns of even order are equal to 1

In particular, for the square of the variance σ2 and the kurtosis κ
⟨N4⟩c/⟨N2⟩c = κσ2

Look for deviations from 1 in κσ2 as a function of collision
energy as a signal of the CEP.
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Linear sigma model with quarks
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Thermodynamics from the effective potential

Z(T , v) = exp
{
−ΩV eff(v)/T

}

A. Ayala Plasma screening and CEP Nucleus-2022 19 / 38



Effective potential

V eff = V tree + V b + V f + V Ring
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Plasma screening in TFT: Ring diagrams
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Effective potential
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Fixing the parameters a2, λ and g from LQCD Phys. Rev. Lett.

125, 052001 (2020)

At the phase transition, the effective potential is flat at
v = 0. This property can be exploited to find the suitable
values of the model parameters a, λ and g at the critical

temperature Tc for µB = 0
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Effective potential
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Partition function in the LSMq up to ring diagram order

Z(v) = exp
{
−ΩV eff(v)/T

}
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Baryon number fluctuations in the LSMq up to ring
diagram order; curtosis

Z(v) = exp
{
−ΩV eff(v)/T

}
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Effective phase diagram
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Freeze-out line Randrup & Cleymans, PRC 74, 047901 (2006)

µB(
√
sNN) =

d

1 + e
√
sNN

d = 1.308GeV, e = 0.273GeV−1
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Baryon number fluctuations in the LSMq
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Summary

• Deviations from HRG behavior when using LSMq as an effective
QCD model up to ring diagrams contribution.

• Ring diagrams inclusion is equivalent to introducing screening effects
at finite T and µB .

• CEP signaled by divergence of κσ2

• 786 MeV < µCEPB < 849 MeV and TCEP ∼ 70.3 MeV

• CEP found at low T and high µB (NICA, HADES?)
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Thanks!
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BACKUP
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Analysis tools: Fluctuations of conserved quantities

• For a probability distribution function P(x) of an stochastic variable
x , the moments are defined as

⟨xn⟩ =
∫
dx xnP(x)

• We can define the moment generating function G (θ) as

G (θ) =
∫
dx exθP(x)

• from where

⟨xn⟩ = dn

dθnG (θ)
∣∣
θ=0

A. Ayala Plasma screening and CEP Nucleus-2022 33 / 38



Analysis tools: Cumulant generating function

K (θ) = lnG (θ)

• The cumulants of P(x) are defined by

⟨xn⟩c =
dn

dθn
K (θ)

∣∣∣∣
θ=0

,

⟨x⟩c = ⟨x⟩,
⟨x2⟩c = ⟨x2⟩ − ⟨x⟩2 = ⟨δx2⟩,
⟨x3⟩c = ⟨δx3⟩,
⟨x4⟩c = ⟨δx4⟩ − 3⟨δx2⟩2.
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Analysis tools: Fluctuations of conserved quantities

• For example, the variance of Q is given

⟨δQ2⟩Ω = ⟨(Q − ⟨Q⟩V )2⟩Ω =
∫
V dx1dx2⟨δn(x1)δn(x2)⟩

• The integrand on the right-hand side is called a correlation function,
whereas the left-hand side is called a (second order) fluctuation

We see that fluctuations are closely related to correlation
functions

In relativistic heavy-ion collisions, fluctuations are measured on
an event-by-event basis in which the number of some charge or

particle species is counted in each event
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Higher moments, larger sensitivity to correlation length ξ

• In HIC’s, the simplest measurements of fluctuations are
event-by-event variances in observables such as multiplicities or mean
transverse momenta of particles.

• At the CEP, these variances diverge approximately as ξ2. They
manifest as a non-monotonic behavior as the CEP is passed by
during a beam energy scan.

• In a realistic HIC, the divergence of ξ is tamed by the effects of
critical slow down (the phenomenon describing a finite and possibly
large relaxation time near criticality).

• However, higher, non-Gaussian moments of the fluctuations depend
much more sensitively on ξ.

• Important to look at the Kurtosis κ (proportional to the
fourth-order cumulant C4), which grows as ξ7.
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Analysis tools: Cumulant generating function

• The relation with thermodynamics comes through the partition
function Z, which is the fundamental object

The partition function is also the moment generating function
and therefore the cumulant generating function is given by

lnZ

• Cumulants are extensive quantities. Consider the number N of a
conserved quantity in a volume Ω in a grand canonical ensemble. It
can be shown that its cumulant of order n can be written as

⟨Nn⟩c,Ω = χnΩ

χn are called the generalized susceptibilities
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Susceptibilities

• Experimentally it is easier to measure the central moments M:
M ijk

BQS = ⟨(B − ⟨B⟩)i (Q − ⟨Q⟩)j(S − ⟨S⟩)k⟩.
• On the other hand, derivatives of lnZ with respect to the chemical
potentials give the susceptibilities χ:

χijk
BQS =

∂i+k+j(P/T 4)

∂ i (µB/T )∂j(µQ/T )∂k(µS/T )
; P =

T

Ω
lnZ.

=⇒ χXY =
1

Ω
T 3M11

XY
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