CROSSING ROTATIONAL BANDS IN SUPERHEAVY EVEN-EVEN NUCLEI

A. D. Efimov ${ }^{1,2}$, I. N. Izosimov ${ }^{3}$
${ }^{1}$ Admiral Makarov State University of Maritime and Inland Shipping, St.-Petersburg, Russia;
${ }^{2}$ Ioffe Physical-Technical Institute, Russian Academy of Sciences, St.-Petersburg, Russia;
${ }^{3}$ Joint Institute for Nuclear Research, Dubna, Russia
E-mail: efimov98@mail.ru

For $Z>92$ even-even nuclei, with the exception of the ${ }^{244} \mathrm{Pu}$ only, in yrast bands there is no manifestation of the reverse bending of the moment of inertia from the square of rotation frequency (back-bending). This leads to the possibility of reproducing the level energies of yrast bands up to spins values $I^{\pi}=32^{+}$in the framework of the IBM1 phenomenology [1]. In present report the structure of the yrast band states was calculated within the framework of the microscopic version of IBM1 [2,3], where bosons with large spins up to $J^{\pi}=14^{+}$were used. The calculation was carried out for ${ }^{248} \mathrm{Cm}$, since only for it the values of $B(E 2)$ were measured up to high spins. The mapping of phonons to bosons is carried out by the traditional way. The wave functions in the boson representation have the form $\left.\Psi(I)=\left|\psi_{c}(I)>+\sum \alpha_{i l, c 1}\right|\left(b_{i 1}^{+} \psi_{c 1}\right)^{(I)}\right\rangle$, where $\mid \psi_{c}>$ are wave functions containing a superposition of d-bosons only. Moreover, the collectivization is so strong that the number of quadrupole bosons $\left\langle n_{d}\right\rangle=19$ in $\left|\psi_{c}\right\rangle$ for the ground state. The Hamiltonian is taken in the form $H=H_{\text {IBM }}+\Sigma \omega_{i} b_{i}^{+} b_{i}+V^{(1)}+V^{(2)}+V^{(3)}$, where $H_{\text {IBM }}$ is the IBM1 Hamiltonian with parameters obtained from D-phonons and taking into account renormalizations due to B_{i}, noncollective phonons, $\omega_{\mathrm{i}}-$ energies of b_{i}-bosons. $V^{(1)} \sim d^{+} d s^{+} b, d^{+} d d s^{+} s^{+} b, d^{+} d^{+} s b, d^{+} d^{+} d b$, $V^{(2)} \sim d^{+} d^{+} d^{+} b s s, V^{(3)} \sim b^{+} b d^{+} s, b^{+} b d^{+} d^{+} s s, b^{+} b d^{+} d$. The parameters that determine the boson operators are calculated based on the microscopic procedure. This leads to precise reproduction of energies up to spin 14^{+}with an error not exceeding a few keV . As can be seen from the presented figure, the reproduction of the $B(E 2)$ values by using the IBM1 phenomenology [1] corresponds to the experiment. The composition of the wave functions is presented in the following figure and it shows a smooth replacement of the collective component, built only from d-bosons, by components that include high-spin pairs or $b(J)$-bosons with momentums $J^{(\pi)}=10^{+}, 12^{+}$. Such smooth replacement explains the absence of the back-bending and the smooth dependence of $B(E 2)$ on spin.

1. A. D. Efimov, I. N. Izosimov, Phys. At. Nucl. 84, 660 (2021).
2. A. D. Efimov, V. M. Mikhajlov, Bull. Russ. Acad. Sci. Phys. 82, 1266 (2018).
3. A. D. Efimov, Rus. J. Nucl. Phys. 83, 380 (2020).
