

Sergey Petrushanko (for CMS Collaboration)

Skobeltsyn Institute of Nuclear Physics Lomonosov Moscow State University

Heavy-ion Physics with CMS Detector

LXXII International Conference "Nucleus-2022: Fundamental Problems and Applications"

Lomonosov Moscow State University Moscow, Russia 11 – 16 July 2022

CMS is a nice heavy-ion experiment

CMS DETECTOR STEEL RETURN YOKE : 14.000 tonnes 12.500 tonnes Total weight SILICON TRACKERS Overall diameter : 15.0 m Pixel (100x150 µm) ~1m² ~66M channels Microstrips (80x180 µm) ~200m² ~9.6M channels Overall length : 28.7 m Magnetic field : 3.8 T SUPERCONDUCTING SOLENOID Niobium titanium coil carrying ~18,000A MUON CHAMBERS Barrel: 250 Drift Tube, 480 Resistive Plate Chambers Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers PRESHOWER Silicon strips ~16m² ~137,000 channels FORWARD CALORIMETER Steel + Quartz fibres ~2,000 Channels CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76,000 scintillating PbWO4 crystals HADRON CALORIMETER (HCAL) Brass + Plastic scintillator ~7,000 channels

Magnetic field: 3.8 Tesla

Silicon Tracker

|η| < 2.4
Electromagnetic
Calorimeter

|η| < 3.0

Hadron Calorimeter

barrel and endcap
|η| < 3.0

with HF-calorimeter up to

|η| < 5.2
Muon Chambers
|η| < 2.4

+ CASTOR detector 5.2 < |η| < 6.6 + Zero-degree calorimeter + TOTEM

Nucleus-2022

Sergey Petrushanko (CMS Collaboration) Heavy-Ions Physics

November 7, 2010 0:27. CMS Control Room

Nucleus-2022

CMS heavy-ion physics results

	Contrasting and Contrasting		The second secon	America de la Tomas Maria de la S Maria de la S	
Forder, et al part alle et al en der sonder sind er der der andere en der sonder sind er der der sonder sonder sonder alle er der sondere et al en de et al en der sondere et	A state of the sta	Lang-coope and chart-coope diffusition angular mentilations in second PDMs collisions at	and and the second	Dependence as paradoxopicity and as controlity of charged hadron perdoction in PAPIs collisions at $\sqrt{\pi_{con}} = 2.79$ TeV	Measurement of the offigitie anisotropy of changed particles produced to POPs collisions at $\sqrt{r_{eff}} + 2.76$ Set
Contraction of the second second			(IFE) - control particular plane in a simple band international distance of a simple band in the simple band international distance of a simple band in the simple		E The CM Collaborator
	and all a state in the state of		A DECEMBER OF A	Inches Language i could it's topologic orbits - advan-	E Bidut

118 published/submitted Heavy-ion Physics CMS papers:

http://cms-results.web.cern.ch/cms-results/public-results/publications/HIN/index.html

Nucleus-2022

CMS heavy-ion physics results

- Global picture of heavy-ion collisions
 - multiplicity,
 - energy,
 - flow, ...
- Hard probes – jets
 - dimuons (quarkonia)
 - charged hadrons R_{AA}, ...

 Pb+Pb collisions

 2010-11: 2.76 TeV
 0.16/nb

 2015-18: 5.02 TeV
 1.7/nb

- p+p, p+Pb, Xe+Xe
 - correlations

Nucleus-2022

Charged particle multiplicity Transverse energy density

Nucleus-2022

Sergey Petrushanko (CMS Collaboration) Heavy-Ions Physics

Non-central Pb+Pb "screen shots" from CMS Event Monitor: Electromagnetic, Hadronic Energy and charged particles tracks

Collective motion is observed in the event azimuthal distributions

Nucleus-2022

Nucleus-2022

The single particle flow coefficient v2(pT) is larger for γp-enhanced events thanfor minimum-bias collisions. But we don't see "ridge" here!Nucleus-2022Sergey Petrushanko (CMS Collaboration) Heavy-Ions Physics

The subtle differences in the higher order harmonics allow for a precise determination of the underlying hydrodynamics and what condition prevail before the onset of hydrodynamics.

Nucleus-2022

Xe+Xe as a "bridge" between p and Pb

Nucleus-2022

Sergey Petrushanko (CMS Collaboration) Heavy-Ions Physics

v, Xe+Xe vs. Pb+Pb

PRC 100 (2019) 044902

The magnitude of the v_2 coefficients for Xe+Xe collisions are larger than those found in Pb+Pb collisions for the most central collisions. This is attributed to a larger fluctuation component in the lighter colliding system. Sergey Petrushanko (CMS Collaboration) Heavy-Ions Physics 12 Nucleus-2022

Hydrodynamic models that consider the Xe nuclear deformation are able to better describe the v_2 [XeXe]/ v_2 [PbPb] ratio in central collisions than those assuming a spherical Xe shape.

Nucleus-2022

Hard Probes for Quark-Gluon Plasma

Nucleus-2022

Sergey Petrushanko (CMS Collaboration) Heavy-Ions Physics

Nucleus-2022

Sergey Petrushanko (CMS Collaboration) Heavy-Ions Physics

J/ψ suppression in Pb+Pb

EPJ C 78 (2018) 509

J/ψ mesons are observed to be suppressed (similarly in 2.76 and 5.02 TeV)

Nucleus-2022

J/ψ and $\psi(2S)$ suppression in Pb+Pb

• Increasing suppression for increasing centrality $\psi(2S)$ is more suppressed than the J/ ψ meson

Nucleus-2022

Upsilon suppression in Pb+Pb

CMS-PAS-HIN-21-007

Observation of sequential suppression of Y family in Pb+Pb.
First observation of Y(3S) in heavy-ion collisions! (σ > 5)

Nucleus-2022

All Y states are found to be suppressed in p+Pb collisions compared to p+p collisions.

Nucleus-2022

arXiv:2202.11807 & CMS-PAS-HIN-21-007

Nucleus-2022

Upsilon suppression Pb+Pb

CMS-PAS-HIN-21-007

R_{AA} is decreasing with numbers of participants of Pb+Pb collision.
 Slightly increasing with p_T?

Nucleus-2022

Sergey Petrushanko (CMS Collaboration) Heavy-Ions Physics

• $v_2 (b \rightarrow J/\psi) < v_2 (prompt J/\psi)$

Nucleus-2022

Sergey Petrushanko (CMS Collaboration) Heavy-Ions Physics

v_3 of J/ ψ in Pb+Pb collisions

CMS-PAS-HIN-21-008

• First measurement of v_3 for prompt and non-prompt J/ ψ separately • no significant non-zero v_3 (J/ ψ)

Nucleus-2022

v_2 and v_3 of $\psi(2S)$ in Pb+Pb collisions

CMS-PAS-HIN-21-008

Nucleus-2022

v₂ of Y(1S) in Pb+Pb collisions

PLB 813 (2021) 136036

In contrast to the J/ψ mesons, no azimuthal anisotropy is observed for the Y(1S) in Pb+Pb...

Nucleus-2022

v₂ of Y(1S) in p+Pb collisions

... and also no azimuthal anisotropy for the Y(1S) in p+Pb !

Nucleus-2022

Prompt D⁰ flow in Pb+Pb collisions

PLB 816 (2021) 136253

Prompt vs. non-prompt D⁰ flow in Pb+Pb collisions

PLB 816 (2021) 136253 & CMS-PAS-HIN-21-003

The elliptic flow of prompt D⁰ larger than non-prompt D⁰ (from b quarks hadrons)

Nucleus-2022

CMS Heavy Flavor v₂ Zoo

Abundant physics behind these high precision and unique measurements from the CMS!

Reference

Nucleus-2022

Measurement of B⁰_s and B⁺ meson in Pb+Pb collisions

PLB 829 (2022) 137062

The B_{s}^{0} meson is observed with a statistical significance in excess of 5 standard deviations for the first time in nucleus-nucleus collisions

Nucleus-2022

Measurement of B⁰_s and B⁺ meson in Pb+Pb collisions

PLB 829 (2022) 137062

First evidence of X(3872) in Pb+Pb

The first search for top using Pb+Pb collisions

PRL 125 (2020) 222001

Using either charged leptons only or charged leptons + b jets. The measured cross sections are compatible with expectations from scaled proton-proton data and QCD predictions.

Nucleus-2022

The first search for top using Pb+Pb collisions

PRL 125 (2020) 222001

• Probing the QGP formation?

Both dilepton multivariate & b-jet counting analyses

The observed significance of the top signal against the background-only hypothesis amounts to 3.8 and 4.0 standard deviations in the two methods.

34

Jet quenching in Pb+Pb

Nucleus-2022

Jet radius scan

• Sensitive to balance between increasing radiative sources and recovering re-distributed energy

JHEP 05 (2021) 284

• Enables simultaneous comparisons of model calculations across jet radii

• First time at CMS it was observes no radius dependence to jet energy loss in central Pb+Pb for $500 \text{ GeV} < p_T \text{ jet} < 1 \text{ TeV}$

Nucleus-2022

Sergey Petrushanko (CMS Collaboration) Heavy-Ions Physics

Azimuthal anisotropy of di-jets in Pb+Pb

CMS-PAS-HIN-21-002

v₂, v₃, v₄ of the di-jets in Pb+Pb were measured for the first time
Di-jets v₂ is compatible with v₂ of high pt hadrons
Di-jets v₃ and v₄ are consistent with zero

Nucleus-2022

- Many interesting heavy-ion physics results with the CMS detector in p+p, p+Pb, Pb+Pb and Xe+Xe...
- Future heavy-ion program at the LHC (Run 3 and 4) with the upgraded CMS detector will provide more exciting opportunities! Stay tunned!

Nucleus-2022

Run 3 was started !

CMS Experiment at the LHC, CERN Data recorded: 2022-Jul-05 14:48:56.743936 GMT Run / Event / LS: 355100 / 51596902 / 53

Nucleus-2022

Sergey Petrushanko (CMS Collaboration) Heavy-Ions Physics