

Measurement of the timing resolution of scintillation detectors samples of a future time-of-flight neutron detector for the BM@N experiment

> Makhnev A. on behalf of INR nDet team 07.2022

BM@N experiment

- Baryonic Matter at Nuclotron
- Fixed-target experiment and NICA's Nuclotron, JINR, Dubna, Russia
- First experiment in operation at NICA
- 2017-2018: world's first data on A-hyperons yield vs centrality at small and medium nuclei at 4.5 AGeV
- Heavy ion experiments (up to Au) after booster launch and BM@N upgrade

BM@N experiment

- Measurements of the symmetry energy of the equation of state at high nuclear matter density formed in the collision of heavy ions
- This study is important both for nuclear physics and for astrophysics
 - Structure of neutron stars
 - Processes during supernova explosions
 - Emission of gravitational waves during the merge of companion stars in binary neutron stars

Previous research and development

- LAND detector
 - total volume 2.0x2.0x1 m³
 - 200 modules (plastic scint/Fe bars 200x10x10 cm³)
 - 10 mutually perpendicular planes with
 20 bars in each plane
 - two PMT for each bar readout (400 readout channels)
 - σt ≈ 250 ps,
 - σx,y,z ≤ 3 cm
 - one-neutron efficiency > 80% for energies > 400 MeV
 - multi-neutron detection capability without 1,2,3H isotopic discriminations

T. Blaich, et al., NIM. A 314 (1992) 136

Previous research and development

- NeuLAND detector
 - total volume 2.5x2.5x3 m³
 - 3000 modules (plastic scintillator bars (w/o Fe) 250x5x5 cm³
 - 30 double planes mutually perpendicular with 100 bars each
 - two PMT for each bar readout (6000 readout channels)
 - σt ≤ 150 ps
 - σx,y,z ≤ 1.5 cm
 - one-neutron efficiency ~95% for energies 200-1000 MeV
 - multi-neutron detection capability

K.Boretzky et al., NIM, A 1014 (2021) 1

Requirements – to measure neutron energies up to 4 GeV with energy resolution comparable with LAND

Proposed solution:

- Plastic scintillator + converter assemblies in layers
 - First scintillator layer charged VETO det.
 - Converter layers from high density materials

- Cells structure of scintillator layers:
 - Cell transverse size: 30x30 40x40mm²
 - Light readout from each scintillator cell by one SiPM directly coupled with a scintillator

- Current simulations:
 - Scintillator cell transverse size
 - Thickness of the scintillators
 - Material of convertors
 - Number of layers

Sample detectors

- Scintillator + MPPC pair
- Variants with different scintillator sizes
 - 40*40*25 mm³
 - 35*35*25 mm³
 - 35*35*25 mm³
- Variants with different MPPCs
 - SensL MicroFC 60035
 - Hamamatsu S13360
- 3D-printed light-tight enclosures

Sample detectors: SensL

- JINR-produced fast scintillator
 - Polystyrol + 1.5% p-terphenil and 0.01%
 POPOP
- SensL MicroFC 60035
 - 6x6mm sensitive area
 - 41% quantum efficiency
 - 3x10^e gain
 - Fast output
- Variants with different scintillator sizes
 - 40*40*25 mm³
 - 35*35*25 mm³
 - 30*30*20 mm³

Sample detectors: Hamamatsu

- JINR-produced fast scintillator
 - Polystyrol + 1.5% p-terphenil and 0.01%
 POPOP
- Hamamatsu S13360
 - 6x6mm sensitive area
 - 41% quantum efficiency
 - 1.7x10^e gain
- Variants with different scintillator sizes
 - 40*40*25 mm³
 - 35*35*25 mm³
 - 30*30*20 mm³

Electronics

- Single channel amplifier developed
 - Preamp + line driver
- 20 dB amplification
- 600 MHz band
- <2.2 hV/√Hz noise
- ±2V dynamic range
- 50 Ohm single-ended output

Measurement setup - cosmic rays

- Cosmic muon telescope
- MCP detector for trigger
 - Photonis FIT (ALICE T0 counter)
 - 18 ps best achieved resolution
 - Timestamp detector
- CAEN DT5742 digitizer
- 20-40 cm base
- ~1 day of exposure

Measurement setup - cosmic rays

Sample detector amplifier

Measurement setup verification - cosmic rays

- MPPC irradiation with ps-scale laser
- 30-40ps setup resolution

Measure	P1:ddelay(C3,C2)
value	41.786 ns
mean	41.83845 ns
min	41.700 ns
max	41.979 ns
sdev	39.06 ps
num	996
status	1
histo	100 March 100 Ma
moto	

Measurement results - cosmic rays

Conclusions

- Final detector design solution is mandated by the resolution vs cost compromise
- Current best result: 150ps with 30x30x25mm crystal and SensL MPPC
 - SensL MPPCs have a high price and low (if any) availability
- With the cost in mind, best solution is **40x40x25 with S13360 MPPC 200 ps**
 - Small decrement in performance, but much better availability
- Possible compromise with 30x30x25mm crystal and S13360 MPPC 170 ps

This work is supported by the RSF grant No 22-12-00132

Sample detectors

Future ToF fast neutron detector: **nDet**

- Transverse size 60 x 60 cm,
- 30 layers:
 - (Fe 1.6 cm + Sc 0.4 cm + Plastic 0.5 cm)
- 400 scintillator cells per layer
 - 4x4x0.4 cm³
- Light readout from each cell by one SiPM directly coupled with scintillator
- Total number of cells in nDet: 12 400
- Total length of nDet ~ (3 λ in)

Detection efficiency study

400 cells in one layer with transverse size 60 x 60 cm

30 layers (Fe 1.6 cm + Sc 0.4 cm + Plastic 0.5 cm) L= 75 cm (3.2 λ_{in})

30 layers 10 layers of (Fe 0.5 cm + Sc 0.4 cm + Plastic 0.5 cm) + 10 layers of (Fe 1 cm + Sc 0.4 cm + Plastic 0.5 cm) +10 layers of)Fe 2 cm + Sc 0.4 cm + Plastic 0.5 cm) L = 62 cm (2.4 λ_{int})

30 layers 10 layers of (W 0.5 cm + Sc 0.4 cm + Plastic 0.5 cm) + 10 layers of (Fe 1 cm + Sc 0.4 cm + Plastic 0.5 cm) + 10 layers of (Fe 2 cm + Sc 0.4 cm + Plastic 0.5 cm) L = 62 cm (2.95 Λ_{int})

25 layers 5 layers of (W 0.5 cm + Sc 0.4 cm + Plastic 0.5 cm) + 20 layers of (W 2 cm + Sc 0.4 cm + Plastic 0.5 cm) L = 65 cm $(4.55 \lambda_{int})$

Taking into account the compromise between efficiency and cost, nDet with layers: Fe 1.6 cm + Sc 0.4 cm + Plastic 0.5 cm is considered as more optimal.