Kaon and pion meson production in the pp and AA collisions in a wide initial energy range

Gennady Lykasov, Alexander Malakhov, Andrei Zaitsev*

JINR, Dubna

Outline

- Self-similarity approach for *p*-*p* and *A*-*A* collisions
- Description of inclusive spectra of pions and kaons in *p-p* collisions in the mid-rapidity region of a wide energy range
- Description of inclusive spectra of pions and kaons in *BeBe* collisions in the mid-rapidity region
- Ratio yields K^+/π^+ and K^-/π^- at mid-rapidity as a function of \sqrt{s}
- Calculations of the yield ratios of antinuclei to nuclei
- Summary

SELF-SIMILARITY APPROACH

Pioneering papers on similarity of inclusive spectra of particles produced in h-h and A-A interactions: I.Ya. Pomeranchuk (1951), E. Fermi (1953), L.D. Landau (1953), R. Hagedorn (1965).

Further development: the self-similarity parameter Π was introduced (A.M. Baldin, A.A. Baldin, 1998) and their analytical solution at the y=0 of produced hadrons was obtained (A.M. Baldin, A.I. Malakhov, 1998). The inclusive production of hadron 1 in the interaction of nucleus *A* with nucleus *B*:

$$A+B \rightarrow 1+\cdots,$$

It satisfies the conservation law of four-momentum in the following form:

$$(N_A P_A + N_B P_B - p_1)^2 = (N_A m_0 + N_B m_0 + M)^2$$

where N_A and N_B are the fractions of four momenta transmitted by the nucleus A and nucleus B; P_A , P_B , p_1 are four momenta of the nuclei A and B and particle 1, respectively; m_0 is the mass of the nucleon; M is the mass of the particle providing conservation of the baryon number, strangeness and other quantum numbers.

For
$$\pi$$
 mesons $m_1 = m_{\pi}$ and $M = 0$;
For K⁻ mesons $m_1 = m_{K}$ and $M = m_{K}$;
For K⁺ mesons $m_1 = m_{K}$ and $M = m_{\Lambda} - m_{\Omega}$, m_{Λ} is the mass of the Λ -baryon.

$$\Pi = \min\left\{\frac{1}{2}\sqrt{\left(u_{\mathrm{I}}\cdot N_{\mathrm{I}} + u_{\mathrm{II}}\cdot N_{\mathrm{II}}\right)^{2}}\right\}$$

where u_A and u_B are the four-velocities of nuclei A and B.

FURTHER DEVELOPMENT OF S-S APPROACH

The relation of Π to the relativistic invariants *s* and m_t^2 was found in the paper by D.A. Artemenkov, G.Lykasov, A.I. Malakhov, Int.J.Mod.Phys. A30, 1550127 (2015); G.I. Lykasov, A.I. Malakhov, Eur.Phys. J. A54, 187 (2018). At y=0:

$$\Pi = \left\{ \frac{m_{1t}}{2m_0\delta} + \frac{M}{\sqrt{s}\delta} \right\} \left\{ 1 + \sqrt{1 + \frac{M^2 - m_1^2}{m_{1t}^2}} \delta \right\}$$

where $\delta = 1 - s_{th}/s$, m_{1t} is the transverse mass of hadron h, s_{th} is the threshold energy square in c.m.s. The inclusive spectrum of particle 1 produced in the AA collision can be presented as the general universal function dependent on the self-similarity parameter Π :

$$Ed^{3}\sigma/dp^{3} = A_{A}^{\alpha(N_{A})} \cdot A_{B}^{\alpha(N_{B})} \cdot F(\Pi)$$

where $\alpha(N_A) = 1/3 + N_A/3$, $\alpha(N_B) = 1/3 + N_B/3$. For symmetric colliding nuclei $N_A = N_B = N$ and N is directly related to Π at y = 0 as $N = 2m_0\Pi/\sqrt{s}$. Therefore, $\alpha(N) = 1/3 + 2m_0\Pi/\sqrt{s}$. Function F(Π) at y=0 has the following form:

$$F(\Pi) = \left[A_q exp(-\Pi/C_q) + A_g \sqrt{m_{1t}} exp(-\Pi/C_g) \right.$$
$$\left. (1 - \sigma_{nd}/g((s/s_0)^{\Delta}) \right] \cdot g(s/s_0)^{\Delta} .$$

where $\Delta = \alpha_{\rm P}(0)$ -1 = 0.08-0.12, g= 21 mb.

N.A. Abdulov, H.Jung, A.V. Lipatov, G.I. Lykasjv., M.A.Malyshev, Phys.Rev. D 98, 054010 (2018)

THE IMPROVED FORM OF F(*II*) AT NON-ZERO RAPIDITY OF PRODUCED HADRONS

By A.I.Malakhov, G.I. Lykasov, Eur.Phys. J. A56, 114 (2020) – Pion production in *p*-*p*:

$$F(\Pi) = \left[A_q \exp\left(-\frac{\Pi}{C_q}\right) + A_g \sqrt{p_T} \phi_1(s) \exp\left(-\frac{\Pi}{C_g}\right)\right] \sigma_{tot}$$
where
$$\Pi(s, m_{1T}, y) = \left\{\frac{m_{1T}}{2m_0\delta_h} + \frac{M}{\sqrt{s}\delta_h}\right\} \cosh(y) G \qquad G = \left\{1 + \sqrt{1 + \frac{M^2 - m_1^2}{(m_{1T} + 2Mm_0/\sqrt{s})^2 \cosh^2(y)}\delta_h}\right\}$$
Here $\phi_1(s) = 1 - \sigma_{nd}(s)/\sigma_{tot}(s) \qquad s_{th}^{K^+} = (m_0 + m_K + m_\Lambda)^2 \qquad s_{th}^{K^-} = (2m_0 + 2m_K)^2$

$$\delta_h = \left(1 - \frac{s_{th}^h}{s}\right) \qquad s_{th}^{\pi} \simeq 4m_0^2 \qquad \sigma_{nd} = (\sigma_{tot} - \sigma_{el} - \sigma_{SD})$$

For K⁻ meson production in *p*-*p* the contribution of one Reggeon exchange in *p*-*p*, as $1/\sqrt{s}$ is considered. It leads to the modification of parameter A_q, i.e.:

$$A_{q} \rightarrow A_{q}(1 + \sqrt{(s_{th}/s)}) \rightarrow A_{q}exp(\sqrt{(s_{th}/s)}).$$

For π -meson production this contribution is too small, therefore A_q is not modified. The parameters A_q , A_g , C_q , C_g do not depend on the energy \sqrt{s} . They depend on a kind of the hadron and were found from the fit of all the data.

Inverse slope parameter

Lykasov G.I., Malakhov A.I. Eur. Phys. J. A 54, 187 (2018)

DESCRIPTION OF THE PION AND KAON *p*_t **SPECTRA IN** *p*-*p* **COLLISIONS**

Eur. Phys. J. A (2021) 57:91 https://doi.org/10.1140/epja/s10050-021-00408-9 THE EUROPEAN PHYSICAL JOURNAL A

Regular Article - Theoretical Physics

Ratio of cross-sections of kaons to pions produced in *pp* collisions as a function of \sqrt{s}

G. I. Lykasov^a, A. I. Malakhov, A. A. Zaitsev

Bands of uncertainty are due to data fitting of NA61/SHINE, STAR, PHENIX, ALICE.

Ratios of kaons to pions in *pp* collisions as functions of \sqrt{s}

Description of \pi spectra in BeBe collision

Be+Be $\rightarrow \pi^-+X$

Black line is the quark contribution; Blue line is the gluon contribution; **Red line corresponds** to the sum of the quark and gluon contributions.

Description of *K*⁺ **spectra in BeBe collisions**

 $Be+Be \rightarrow K^++X$

Black line is the quark contribution; Blue line is the gluon contribution; **Red line corresponds** to the sum of the quark and gluon contributions.

Description of *K***⁻ spectra in BeBe collisions**

 $Be+Be \rightarrow K^-+X$

Black line is the quark contribution; Blue line is the gluon contribution; **Red line corresponds** to the sum of the quark and gluon contributions.

Ratios of kaons to pions as functions of \sqrt{s}

Lykasov G.I., Malakhov A.I. & Zaitsev A.A. Eur. Phys. J. A 58, 112 (2022)

Ratios of antiparticle to particle yields

arXiv:2201.04540v1 [nucl-th]

- We have applied the self-similarity approach based on the assumption of the similarity of inclusive spectra of hadrons produced in AA collisions at their low transverse momenta and in the mid-rapidity region. To do this, we have modified the simple exponential form of the spectrum and presented it in two parts due to the quark and gluon contributions.
- Applying the offered approach to the pion and kaon production in the most 20% central *BeBe* collisions at the mid-rapidity region we have obtained a satisfactory description of $p_{\rm T}$ spectra of NA61/SHINE data.
- We have got rather satisfactory description of ratio yields K^+/π^+ and K^-/π^- as functions of \sqrt{s} . The physical reason of their energy dependence happens due to the conservation law of four-momenta and quantum numbers, and also to the Regge behavior of the cross-section.
- The approach allows us to describe the ratio of the total yields of anti-nuclei to the nuclei produced in NN collisions as a function of \sqrt{s} at y=0.
- The future plans are to describe the inclusive spectra of pions and kaons produced in the most central of ArSc, AuAu and PbPb collisions.

Thank you for the attention!