

LXXII International conference "Nucleus-2022: Fundamental problems and applications"

DEVELOPMENT OF THE CRITERION FOR THE IDENTIFICATION OF CONTRAST AGENTS IN PHOTON-COUNTING COMPUTED TOMOGRAPHY

Rostislav Sotensky

JINR, Dubna, Russia

13 July 2022 Moscow

Multi-energy tomography

Bateman, Christopher & Rajendran, Kishore & Ruiter, Niels & Butler, Anthony & Butler, Philip & Renaud, Peter. (2015). The Hidden K-edge Signal in K-edge Imaging.

Anderson, Nigel G. et al. "Spectroscopic (multi-energy) CT distinguishes iodine and barium contrast material in MICE." European Radiology 20 (2010): 2126-2134.

- Medipix series detectors are hybrid semiconductor pixel detector;
- Developed by Medipix collaboration (<u>https://medipix.web.cern.ch/</u>);
- Consists of a semiconductor sensor and a readout integrated circuit;
- Photons are detected by their transferring energy to electrons. The appeared free electrons move to the pixel contact pads, causing a signal.
- The signal is digitized and compared with the threshold in a pixel. Pixels operate independent.

Experimental Microtomograph "Kalan"

Widepix detector:

- 15 Medipix3RX in one row
- 256x3840 pixels
- Size of pixel 55x55 mkm
- Si sensor

Goals:

- Separate materials that differ in composition. In particular, select a contrast agent that has an absorption edge in the working energy range;
- Determine the concentration of the contrast agent.

In this case, it is necessary to use as little energy as possible to reduce the scanning time.

2D Cocktail phantom

Frame is an image from the detector and is a 2D histogram.

Flat Field Correction: FFC = F(object) / F(flat field) \Rightarrow FFC = exp($-\mu \rho x$) The spectrum is the average pixel values in the RoI after the FFC, depending on the threshold.

In samples with a low concentration of Lanthanum, the K-edges are almost invisible. The character of their spectra is the same as that of water, alcohol, and a weak solution of iodine. It is difficult to distinguish them.

First step: Subtraction of the linear trend of the spectrum.

Spectrum after linear trend subtraction:

$$F_1(thl) = F_0(thl) - F_0(a) - F_0(b) \frac{thl-a}{b-a},$$

where F_0 - initial spectrum

The first conditions for the fulfillment of the criterion:

$$F_{1}(c) > F_{1}(d)$$

 $F_{1}(c) > 0$

The criterion for the identification of contrast agents

Second step: Subtraction of the Parabolic Trend of the Spectrum.

The criterion for the identification of contrast agents

The second conditions for the fulfillment of the criterion:

Lanthanum concentration:

$$G = F_2(d) - F_2(c)$$

The sample with iodine (I) can be weeded out from the early condition (first step).

Rostislav Sotensky/Nucleus 2022/13.07.22

The criterion for the identification of contrast agents

Conditions for the fulfillment of the selection criterion La:

- $F_1(c) > F_1(d)$
- $F_1(c) > 0$
- $F_2(c) < 0$
- $F_2(d) > 0$

Formula for estimating the concentration of lanthanum :

G = $[F_2(d) - F_2(c)] \times 1000$, or

 $G = [k_1 thl^2 + k_2 thl + k_3 - F_0(thl)] \times 1000, \quad (1)$

where k_1 , k_2 , k_3 - solution of a system of equations (2)

$$\begin{cases} k_1 a^2 + k_2 a + k_3 = F_0(a) \\ k_1 b^2 + k_2 b + k_3 = F_0(b) \\ k_1 m^2 + k_2 m + k_3 = F_0(m) \end{cases}$$
(2)

All 5 points (a, b, c, d, m) were refined experimentally.

Rostislav Sotensky/Nucleus 2022/13.07.22

Results of applying the criterion in 2D-CT

Results of applying the criterion in 3D-CT

Phantom "Eva" Ø 70 mm

Reconstructed slice of the phantom

Results of applying the criterion in 3D-CT

Slice of the phantom

The fulfillment of the conditions for the content of lanthanum in the Rol. Green color - samples that meet the condition of the criterion. Yellow color - samples that do not meet the criterion. The concentration of lanthanum calculated by the criterion.

Results of applying the criterion in 3D-CT

Rol	La-40	La-20	La-10	La-5	Paraffin	Iodine	Ca-40	H20	Bone	Plex	Air
Criterion	Yes	Yes	Yes	Yes	No	No	No	No	No	No	No
Value	281.5	145.7	46.8	27.7	5.6	725.9	-48.2	-13.6	-157.8	-22.9	-7.6
Error	39.3	37.9	37.2	37.6	37.6	55.6	38.3	37.0	42.5	13.9	11.9

Rostislav Sotensky/Nucleus 2022/13.07.22

Conclusions

- The proposed method makes it possible to separate the contrast agent from other materials;
- The developed criterion can be used to assess the concentration of the contrast agent;
- There is a dependence between the actual concentration and the concentration calculated by the criterion;
- The criterion was developed for lanthanum contrast agents, but it can be used for other contrast agents;
- This criterion can be used in 2D-CT and 3D-CT;
- 5 energies are required to apply the criterion;
- By adding a few more scan energies, it is possible to separate several contrast agents at the same time

This work has been supported by the Russian Science Foundation under grant № 22-15-00072.

Thank you!