Production of Σ^0 hyperon and search of Σ^0 -hypernuclei at LHC with ALICE

A. Borissov^a on behalf of the ALICE collaboration

 a Moscow Institute for Physics and Technology, MIPT Alexander.Borissov@cern.ch

Abstract

The first measurements of the transverse momentum $(p_{\rm T})$ spectra, integrated yields and mean $p_{\rm T}$ of Σ^0 and $\overline{\Sigma}^0$ hyperons in pp collisions at $\sqrt{s} = 7$ TeV at the LHC are presented. The $\Sigma^0(\overline{\Sigma}^0)$ is reconstructed via its electromagnetic decay channel $\Lambda(\overline{\Lambda})\gamma$. The $\Lambda(\overline{\Lambda})$ baryon is reconstructed via its decay into $p + \pi^-(\overline{p} + \pi^+)$, while the photon is detected by exploiting the unique capability of the ALICE detector to measure low-energy photons via conversion into e^+e^- pairs in the detector material. The yield of Σ^0 is compared to that of the Λ baryon, which has the same quark content but different isospin. These data contribute to the understanding of hadron production mechanisms and provide a reference for constraining QCD-inspired models and tuning Monte Carlo event generators such as PYTHIA.

In addition, the feasibility of a search for a bound state of proton, neutron and $\Sigma^0(\Sigma^0-$ hypernuclei $^3_{\Sigma^0}$ H) is presented, based on the luminosities foreseen for the LHC Runs 3 and 4.