

Sergey Kiselev (NRC KI - ITEP Moscow) for the ALICE Collaboration

- Motivation
- ALICE detector
- Signal extraction
- $p_{\rm T}$ spectra
- Mean transverse momentum
- Yields
- Ratios to stable hadrons
- Nuclear modification factors
- Summary

Motivation

• pp and p–Pb collisions:

- \checkmark the baseline for heavy-ion collisions
- ✓ system size dependence
- \checkmark role of cold nuclear matter
- \checkmark study of collectivity in small systems

• A–A collisions:

- ✓ in-medium energy loss
 - → nuclear modification factor for resonances
- \checkmark restoration of chiral symmetry
 - → modification of width, mass and branching ratio
- ✓ regeneration and rescattering effects
 - → modification of yield and ratios to stable hadrons
 - → timescale between chemical and kinetic freeze-out

ρ(770) ⁰	1.3	ππ	pp/Pb–Pb@2.76		
K*(892) ⁰	4.2	Κπ	all		
$K^*(892)^{\pm}$	4.2	$K_S^{\ 0} \pi$	pp @5.02/8/13 Pb-Pb@5.02		
f ₀ (980)	~ 5	ππ	pp/p-Pb@5.02		
$\Sigma(1385)^{\pm}$	5-5.5	Λπ	pp@7 p-Pb /Pb-Pb@5.02		
А(1520)	12.6	рК	pp@7 p-Pb@5.02 Pb-Pb@2.76/5.02		
Ξ(1530) ⁰	21.7	$\Xi^{-}\pi$	pp@7 p-Pb@5.02 Pb-Pb@2.76		
ф(1020)	46.4	КК	all		

ALICE detector

S.Kiselev

 $\langle p_{\rm T} \rangle$ vs. $dN_{\rm ch}/d\eta$

Λ(1520)

Pb-Pb@5.02 TeV

 $\langle p_{\rm T} \rangle$ rises with increasing multiplicity

models with rescattering effects (EPOS, MUSIC+SMASH) reproduce data

models without hadronic afterburner underestimate the measurements

MUSIC:arXiv:2105.07539

ALI-PREL-516652

K*±/K vs. $dN_{ch}/d\eta$ New

K*±/K shows a ~55% suppression
going from peripheral Pb–Pb collisions to most central Pb–Pb
→ consistent with the rescattering of the daughters as the dominant effect
models with rescaterring effect (MUSIC+SMASH and HRG-PCE) qualitatively describe the data

- pp: hint of decrease

- K^{*±} measurement is consistent with previous results for K^{*0}

 $\tau(K^*) = 4.2 \text{ fm/c}$

HRG-PCE: PRC102(2020)024909 γ_s-CSM: PRC100(2019)054906

Λ^*/Λ vs. $dN_{ch}/d\eta$

NEW(pp@5.02,13 Pb–Pb@5.02 TeV)

- Λ*/Λ shows a ~ 70% suppression
 going from peripheral Pb–Pb
 collisions to most central Pb–Pb
 - → consistent with the rescattering of the daughters as the dominant effect
 it is larger than ~ 55% for K*[±] although
 τ(Λ*) = 3 τ(K*)
 - follows Pb–Pb@2.76 TeV
 - (PR C99 (2019) 02490) suppression trend
 - confirms the trend seen by STAR at 200 GeV

•MUSIC-SMASH:

- reproduce the multiplicity suppression trend

•thermal models

- all overestimate the ratio in central Pb-Pb collisions
- pp: no suppression is observed

$\tau(\Lambda^*) = 12.6 \text{ fm/c}$

PCE: PRC102(2020)024909 THERMUS: Comput. Phys. Commun. **180** (2009) 84 GSI-Heidelberg: PL **B673** (2009) 142 SHARE3: Comput. Phys. Commun. **185** (20014) 2056 STAR data: PR **C78** (2008) 044906

11-16 Jul 2022

 Σ^*/π vs. $dN_{ch}/d\eta$ NEW

$\tau(\Sigma^*) = 5-5.5 \text{ fm/c}$

11-16 Jul 2022

NUCLEUS-2022, Moscow S.Kiselev 10

NEW

f_0/π vs. $dN_{ch}/d\eta$, vs. p_T $\tau(f_0) = -5$ fm/c

quark structure of f_0 is still unknown. possible configurations: qqbar, (qq)(qbar qbar), hadronic molecules, ...

 ϕ/π : strangeness enhancement K^{*0}/π : competition strangeness enhancement and rescattering effect f_0/π : rescattering is the dominant effect exists at low p_T

 γ_s -CSM prediction for the f₀(980) assuming net strangeness equal to zero is consistent with the data within 1.9 σ

10³

 $\langle dN_{ch}/d\eta \rangle$

Nuclear modification factor R_{AA} – centrality dependence

strong suppression for the most central collisions

11-16 Jul 2022

no significant energy dependence

Summary

Yields:

independent of collision system and energy appear to be driven by event multiplicity

Particle yield ratios (with previous results):

Pb–Pb: resonance suppression

resonance	ρ	K *	$\Sigma^{*\pm}$	Λ^*	Ξ*0	ф
lifetime (fm/c)	1.3	4.2	5-5.5	12.6	21.7	46.4
suppression	yes	yes	?	yes	no	no

qualitatively described by model with rescattering

```
pp, p–Pb: K*, f_0 - yes, \Lambda^* - no
```

```
R<sub>AA</sub>:
Pb–Pb: no significant energy dependence
```

11-16 Jul 2022