Recent results of the KamLAND-Zen experiment

National Research Nuclear University

Alexandre Kozlov

Nucleus-2022, Moscow

Search for physics beyond the SM at Kamioka (good timing, industry support and luck)

Atsuto Suzuki

鈴木 厚人

Masatoshi Koshiba

1000 20-inch photomultiplier tubes

Kamiokande: search of p decay (3kt *water Cherenkov* detector, 6 July 1983; detected SN1987A)

OD upgrade (2016) Point-like event **KamLAND:** search of **v** oscillation (1kt *liquid scintillator* detector, 17 Jan 2002; confirmed LMA for Solar neutrino problem in 2003)

The $0\nu\beta\beta$ experiment using ¹³⁶Xe

► The KamLAND-Zen collaboration was formed at Caltech KamLAND meeting, March 16-19 2008

- **KamLAND-Zen 400** (ø3.2m mini-balloon)
- Phase-I 320kg of enriched xenon (2011-2012)
 Purification
- Phase-II 380kg of enriched xenon (2013-2015)
- Upgrade
- KamLAND-Zen 800 (ø3.8m mini-balloon) 745kg of enriched xenon (2019-until now)

Xenon gas, $\sim 91\%$ enriched in ^{136}Xe , was delivered from Russia

KamLAND-Zen: search of $0\nu\beta\beta$ decay in the ¹³⁶Xe detector, began in October 2011

^{110m}Ag fallout from the Fukushima-I nuclear incident in 2011 had a long lasting negative impact on the KamLAND-Zen 400 experiment

The 0vßß test of seesaw mechanism

The KamLAND-Zen 400: final result (year 2016)

The final result of the KamLAND-Zen 400 (2016)

The new mini-balloon for KamLAND-Zen 800

JINST 16 P08023 (2021)

Uranium and Thorium impurities in the new mini-balloon film

The new $0\nu\beta\beta$ result from KamLAND-Zen 800

Best fit for $0\nu\beta\beta$: 0

¹³⁶Xe Half-life limit (KamLAND-Zen 400 + 800)

¹³⁰Te (CUORE): $T_{1/2} > 2.2 \times 10^{25}$ yr [Nature 604, 53 (2022)]

The best to date limit on the effective neutrino mass

Summary

- The KamLAND-Zen 800 was the first 0vββ experiment to explore the IH region.
- Data taking is going to continue for two more years.

970 kg-yr ¹³⁶Xe exposure $T_{1/2} > 2.3 \times 10^{26}$ yr at 90% CL $\langle m_{\beta\beta} \rangle < 36-156$ meV (depends on choice of NME)

Article in Physical Review Letters is going to be published soon

Thank you!

Neutrino masses

