

Pion femtoscopy in Au+Au collisions at $\sqrt{s_{_{NN}}}=3$ GeV in the STAR experiment

Anna Kraeva (for the STAR Collaboration) National Research Nuclear University MEPhI

Motivation:

- The energy dependence of femtoscopic scales may reveal fundamental insights into the QGP equation of state
- The low energy results help reveal the structure of the particle emission region where deconfinement is not expected and help complement the presented shape dependence as the collision energy increases

<u>Goal:</u>

• Investigation of spatial and temporal parameters of the particle emission region in collisions of gold nuclei at an energy of 3 GeV

Experiment STAR

STAR

Anna Kraeva

Program on a fixed target

Fixed-target program: a beam of gold nuclei collides with a **gold target 1 mm thick** (the density of the foil is 1.93 g/cm²). The target was installed in a vacuum pipe 211 cm west of the STAR center and 2 cm below the beam axis.

Dataset:

STAR

- $\sqrt{s_{_{\rm NN}}} = 3 \text{ GeV Fixed-Target 2018}$
- $\sim 2.6 \cdot 10^8$ events

Tracks: • $-2 < \eta < 0$ • $0.15 < p_T < 1.5 \text{ GeV/c}$

Identification of particles:

0.15 <math>0.55

TOF PID

Pion identification was carried out using combination of TPC and TOF in a wide range of momentum 0.15Anna Kraeva

4

Two-particle correlation function experimentally:

$$C(q) = rac{A(q)}{B(q)}$$
 , where $A(q)$ - so $B(q)$ -

- formed using pairs where both tracks are from the ame event. It is contains quantum-statistical orrelations (QS) and final state interactions
- obtained via mixing technique, where the two tracks are from separate events. Physics correlations are absent

q - relative momentum

Femtoscopic radii are extracted by fitting C(q) with Bowler-Sinyukov:

$$C(q) = N[(1 - \lambda) + \lambda K(q)(1 + G(q))], \text{ where}$$

- $a^2 B^2 - a^2 B^2 - a^2 B^2 - 2a \ a \ B^2 - 2a \ a \ B^2 - 2a \ a \ B^2)$ I CMS system was

emission duration

$$G(q) = exp(-q_o^2 R_o^2 - q_s^2 R_s^2 - q_l^2 R_l^2 - 2q_o q_s R_{os}^2 - 2q_s q_l R_{sl}^2 - 2q_o q_l R_{ol}^2)$$
 LCMS system was used

- N normalization factor,
- λ correlation strength,
- K(q) Coulomb correction factor,
- $\boldsymbol{q}_{\text{long}}$ along the beam direction,
- q_{out}^{ms} along the transverse momentum of the pair,
- q_{side}^{-} perpendicular to longitudinal and outward directions

Anna Kraeva

Yu. Sinyukov et al. Phys. Lett. B 432 (1998) 248 M. Bowler Phys. Lett. B 270 (1991) 69

Correlation functions of positive and negative pions pairs at centrality 0-10% in range $0.15 < k_T < 0.25$ GeV/c of momentum

- The correlation functions of identical pions were constructed for all ranges in kT.
- Femtoscopic radii are extracted by fitting correlation function with Bowler-Sinyukov.

radii

Femtoscopic radii decrease with increasing k_{π} due to a decrease in the emission region of the system

- The femtoscopic radii of the emission region in the out, side and long projections for positive and negative pions decrease with increasing transverse momentum of pairs
- due to transverse flow

Summary

- Femtoscopic measurements of charged pions produced in Au+Au collisions at $\sqrt{s}_{\rm NN}=3~{\rm GeV}$ are presented
- Three-dimensional correlation functions of identical charged pions are constructed for 4 $k_{\rm T}$ bins and for 0-10% central collisions
- The transverse momentum dependence of emitting source radii ($\rm R_{_{out}},\,R_{_{side}},\,R_{_{long}})$ was measured
 - \circ $\,$ Femtoscopic radii decrease with increasing $k_{_{\rm T}}$ due to a decrease in the emission region of the system due transverse flow

Back up

Selected cuts on events, tracks, particles:

Tracks:

- nHits > 15
- 0.15
- $0.15 < p_T < 1.5 \text{ GeV/c}$
- $-2 < \eta < 0$
- $\bullet \quad 0 < {\rm DCA} < 3 \ {\rm cm}$

Particles:

 $p>0.55~{\rm GeV}$:

- $\bullet \quad \text{-}0.05 < m^2 < 0.08 \; \mathrm{GeV^2/c^4}$
- $-0.015 < 1/\beta 1/\beta(\pi) < 0.015$
- |nSigma(Pion)| < 3
- $p < 0.55~{\rm GeV/c:}$
 - |nSigma(Pion)| < 2
 - |nSigma(others)| > 2

