Pion femtoscopy in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{\mathrm{s}_{\mathrm{NN}}}=3 \mathrm{GeV}$ in the STAR experiment

Anna Kraeva (for the STAR Collaboration)
National Research Nuclear University MEPhI

Motivation:

- The energy dependence of femtoscopic scales may reveal fundamental insights into the QGP equation of state
- The low energy results help reveal the structure of the particle emission region where deconfinement is not expected and help complement the presented shape dependence as the collision energy increases

Goal:

- Investigation of spatial and temporal parameters of the particle emission region in collisions of gold nuclei at an energy of 3 GeV

M. S. Abdallah et al. (STAR Collaboration)

Phys. Rev. C 103, 2021

Experiment STAR

Program on a fixed target

Fixed-target program: a beam of gold nuclei collides with a gold target $1 \mathbf{~ m m}$ thick (the density of the foil is 1.93 $\mathrm{g} / \mathrm{cm}^{2}$). The target was installed in a vacuum pipe 211 cm west of the STAR center and 2 cm below the beam axis.

Dataset: • $\sqrt{\mathrm{s}_{\mathrm{NN}}}=3 \mathrm{GeV}$ Fixed-Target 2018

- $\quad \sim 2.6 \cdot 10^{8}$ events

Identification of particles:

$0.15<\mathrm{p}<0.55 \mathrm{GeV} / \mathrm{c}:$ TPC;
$0.55<\mathrm{p}<1.5 \mathrm{GeV} / \mathrm{c}:$ TPC+TOF

- $-2<\eta<0$
- $0.15<\mathrm{p}_{\mathrm{T}}<1.5 \mathrm{GeV} / \mathrm{c}$

Tracks:

Pion identification was carried out using combination of TPC and TOF in a wide range of momentum $0.15<\mathrm{p}<1.5 \mathrm{GeV} / \mathrm{c}$

Two-particle correlation function experimentally:

$C(q)=\frac{A(q)}{B(q)}$, where $A(q) \begin{aligned} & \text { - formed using pairs where both tracks are from the } \\ & \text { same event. It is contains quantum-statistical }\end{aligned}$ correlations (QS) and final state interactions

$B(q)$ - obtained via mixing technique, where the two tracks are from separate events. Physics correlations are absent

Yu. Sinyukov et al. Phys. Lett. B 432 (1998) 248
q - relative momentum
Femtoscopic radii are extracted by fitting $\mathbf{C}(q)$ with Bowler-Sinyukov:

$$
C(q)=N[(1-\lambda)+\lambda K(q)(1+G(q))], \text { where }
$$

$G(q)=\exp \left(-q_{o}^{2} R_{o}^{2}-q_{s}^{2} R_{s}^{2}-q_{l}^{2} R_{l}^{2}-2 q_{o} q_{s} R_{o s}^{2}-2 q_{s} q_{l} R_{s l}^{2}-2 q_{o} q_{l} R_{o l}^{2}\right)$
LCMS system was used
N - normalization factor,
$\mathrm{R}_{\text {side }} \sim$ geometrical size of the system,
λ - correlation strength,
$\mathrm{K}(\mathrm{q})$ - Coulomb correction factor,
$q_{\text {long }}$ - along the beam direction,
$\mathrm{q}_{\text {out }}{ }^{-}$along the transverse momentum of the pair,
$\mathrm{q}_{\text {side }}$ - perpendicular to longitudinal and outward directions
$R_{\text {out }}^{\text {side }} \sim$ geometrical size + particle emission duration $\mathrm{R}_{\text {long }} \sim$ medium lifetime

Correlation functions of positive and negative pions pairs at centrality $0-10 \%$ in range $0.15<\mathrm{k}_{\mathrm{T}}<\mathbf{0 . 2 5} \mathrm{GeV} / \mathrm{c}$ of momentum

$$
\vec{k}_{T}=\left(\vec{p}_{1, T}+\vec{p}_{2, T}\right) / 2
$$

- The correlation functions of identical pions were constructed for all ranges in kT.
- Femtoscopic radii are extracted by fitting correlation function with Bowler-Sinyukov.

Charged pion femtoscopic

 radii- The femtoscopic radii of the emission region in the out, side and long projections for positive and negative pions decrease with increasing transverse momentum of pairs
- Femtoscopic radii decrease with increasing k_{T} due to a decrease in the emission region of the system due to transverse flow

Summary

- Femtoscopic measurements of charged pions produced in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{\mathrm{s}_{\mathrm{NN}}}=3 \mathrm{GeV}$ are presented
- Three-dimensional correlation functions of identical charged pions are constructed for $4 \mathrm{k}_{\mathrm{T}}$ bins and for $0-10 \%$ central collisions
- The transverse momentum dependence of emitting source radii ($\mathrm{R}_{\text {out }}, \mathrm{R}_{\text {side }}$, $\mathrm{R}_{\text {long }}$) was measured
- Femtoscopic radii decrease with increasing k_{T} due to a decrease in the emission region of the system due transverse flow

Back up

Selected cuts on events, tracks, particles:

Tracks:

- $n H i t s>15$
- $0.15<\mathrm{p}<1.5 \mathrm{GeV} / \mathrm{c}$
- $0.15<\mathrm{p}_{\mathrm{T}}<1.5 \mathrm{GeV} / \mathrm{c}$
- $-2<\eta<0$
- $0<\mathrm{DCA}<3 \mathrm{~cm}$

Particles:

$\mathrm{p}>0.55 \mathrm{GeV}$:

- $-0.05<\mathrm{m}^{2}<0.08 \mathrm{GeV}^{2} / \mathrm{c}^{4}$
- $-0.015<1 / \beta-1 / \beta(\pi)<0.015$
- \mid nSigma(Pion) $\mid<3$
$p<0.55 \mathrm{GeV} / \mathrm{c}$:
- \mid nSigma(Pion) $\mid<2$
- \mid nSigma(others) $\mid>2$

