Application of the MC-Glauber approach for centrality determination in heavy-ion collisions with the BM@N experiment

Ilya Segal¹, Arkadiy Taranenko¹, Oleg Golosov¹,

Dim Idrisov¹, Alexandra Andomina¹

for the BM@N Collaboration

¹NRNU MEPhI

July 14th, 2022 NUCLEUS-2022 Conference

Motivation

- Evolution of matter produced in heavy-ion collisions depends on its initial geometry
- Goal of centrality determination: map (on average) the collision geometry parameters to experimental observables (centrality estimators)
- Glauber model is commonly used to build such connection
- Centrality class: group of events corresponding to a given fraction (%) of the total cross section:

$$C_b = rac{1}{\sigma^{AA}_{inel}} \int_0^b rac{d\sigma}{db'} db'$$

Why this method is important for BM@N

ALICE; Phys.Rev.C 88 (2013) 4, 044909

HADES; Eur.Phys.J.A 54 (2018) 5, 85

CBM; J.Phys.Conf.Ser. 1690 (2020) 1, 012107

- MC-Glauber x NBD multiplicity fitting procedure is standard method for centrality determination
- BM@N needs this method to compare data in the least experiment dependent way

Centrality Estimators in BM@N

* these plots are illustrative only and do not directly refer to BM@N

BM@N subsystems for centrality determination

Simulation setup

• DCM-QGSM-SMM

M.Baznat et al. PPNL 17 (2020) 3, 303

- Xe-Cs @ E_{kin} = 4A GeV
- Transport: GEANT4

Subsystems

- Multiplicity: Tracking system GEM+STS
- Spectators energy: FHCal

MC Glauber model

MC Glauber model provides a description of the initial state of a heavy-ion collision

- Main ideas:
 - Independent straight line trajectories of the nucleons
 - A nucleus-nucleus collision is treated as a sequence of independent binary nucleon-nucleon collisions
 - Position of nucleons in individual collision are sampled using Monte-Carlo simulation

Main configuration parameters:

- Collision system
- Inelastic nucleon-nucleon cross section, $\sigma_{\text{inel}}^{\text{NN}}$ (depends on collision energy)
- Nuclear charge densities $\rho(r) = Wood$ -Saxon distribution:

 $\rho(r) = \rho_0 \cdot \frac{1 + w(r/R)^2}{1 + \exp\left(\frac{r-R}{a}\right)}$

Geometry parameters:

b – impact parameter

 N_{part} – number of nucleons participating in the collision N_{spec} – number of spectator nucleons in the collision N_{coll} – number of binary NN collisions

Glauber Modeling in High Energy Nuclear Collisions: Ann.Rev.Nucl.Part.Sci.57:205-243,2007

MC-Glauber + NBD fitting procedure

MC-Glauber + NBD fitting procedure

MC-Glauber + NBD fitting procedure

MC-Glauber fit result Xe-Cs @ 4.0 AGeV

 χ^2 =1.31±0.07; f=0.9, μ =0.786293, k=1; MinFitBin=10, MaxFitBin=250

- Fit result is good
- Impact parameter distributions in different centrality classes reproduces ones from DCM-QGSM-SMM

Summary

- MC Glauber and multiplicity fitting procedure is developed for BM@N
- Relation between impact parameter and centrality classes is extracted
- Software implementation of the procedure is ready and also used also in MPD (see tomorrow talk about centrality in MPD)

Work in progress

- Apply this procedure for data of run8 session
- Develop centrality determination procedure based on spectators energy and MC Glauber model (for details also see tomorrow talk about centrality in MPD)

This work is supported by: the RFBR grant No. 18-02-40086, the Russian Academic Excellence Project (contract No. 02.a03.21.0005, 27.08.2013)

Backup

Why several alternative centrality estimators

Anticorrelation between charge of the spectator fragments (FW) and particle multiplicity (hits)

HADES; Phys.Rev.C 102 (2020) 2, 024914

A number of produced protons is stronger correlated with the number of produced particles (track & RPC+TOF hits) than with the total charge of spectator fragments (FW)

HADES; Phys.Rev.C 102 (2020) 2, 024914

Avoid self-correlation biases when using spectators fragments for centrality estimation

SMM description of the ALADIN's fragmentation data

A.S. Botvina et al. NPA 584 (1995) 737

R.Ogul et al. PRC 83, 024608 (2011)

Mass number of fragments sampling for given event: new procedure

MC-Glauber+Spectators fitting procedure

MC-Glauber+Spectators fitting procedure

NA61/SHINE experimental setup

PSD detector layout

Full mode procedure (example for NA61)

- Scaling along both X and Y axis is applied
- Form of energy distribution is reproducible

MC-Glauber+Spectators fitting procedure

Light mode procedure fit (example for NA61)

 χ^2 =18.1891±0.365028; μ =12.4943, k=8.9; MinFitBin=17 (200 GeV), MaxFitBin=250 (3000 GeV)

- Produced particles affect form of full PSD distribution
- Light mode maybe needs some additional parameters

Population of fragments with energy and rapidity

- Energy and rapidity distributions have different shapes for different fragment mass
- Shapes are used as input for sampling energy & rapidity values for each fragment

NBD at different values of k

MC Glauber fit results are in good agreement with simulated input

Centrality determination using STS multiplicity

Distribution provides connection between

centrality class (multiplicity range, M $\pm \Delta$ M) and impact parameter range (b $\pm \sigma_{\rm b}$)