¹⁰Li as Borromean Nucleus Subsystem

P. G. Sharov L. V. Grigorenko I. A. Egorova A. N. Ismailova

Flerov Laboratory of nuclear Reaction, JINR, Dubna

July 15, 2022

Limits of the nuclear structure

Outline

- Nuclear structure near the drip-line
- Borromean nuclei phenomenon
- ▶ The problem of ¹⁰Li
- Nuclear structure studies in direct reactions
- \blacktriangleright ¹¹Li ground state calculations

The nuclear drip-lines have been reached for light and intermediate mass nuclei.

"Exotic" nuclear structure

- Halo-nuclei
- Borromean nuclei
- direct 2p- 2n- 4n- decays
- ▶ p- 2p- (2n- 4n-) radioactivity

Borromean nuclei

related phenomena

- ► 2*n* 2*p*-halo
- ▶ direct 2*n* 2*p*-decay
- 2n- 2p-radioactivity

- borromean nuclei are not so exotic
- cluster model provide good description for borromean states.

Borromean nucleus in three-body model

3-body Schrodinger Equation

 $[H_0 + V_{NN} + V_{CN_1} + V_{CN_2} + V_3]\Psi = 0$

- V₃ collective model potential for fine-tuning
- HH-method is used for SE solution

hyper-spherical harmonic method

$$\rho^{2} = \frac{A_{1}A_{2}A_{3}}{A_{1} + A_{2} + A_{3}} \left[\frac{r_{12}^{2}}{A_{3}} + \frac{r_{13}^{2}}{A_{2}} + \frac{r_{23}^{2}}{A_{1}} \right]$$
$$\Psi = \sum \psi_{K\gamma}(\rho)\mathcal{J}_{K\gamma}(\otimes_{\nabla})$$

Solution of SE reduce to solution of ODE system.

Experimental studies of ¹⁰Li I (How to?)

Direct reactions

Elastic scattering

- ▶ Radioactive ion (^{9}Li) n
- scattering phaseshifts can be directly obtained
- Such kind of experiments are technically impossible due to short lifetime of participants

Elastic scattering for isotopic analog

- ▶ Radioactive ion (⁹Li) p.
- This channel has same nuclear interaction.
- Problem of virtual states.

 $d({}^{9}\text{Li}, p){}^{10}\text{Li}$ $p({}^{11}\text{Li}, pn){}^{10}\text{Li}$ $p({}^{11}\text{Li}, d){}^{10}\text{Li}$ $t({}^{10}\text{Be}, {}^{3}\text{He}){}^{10}\text{Li}$

. . .

Two ways:

- Stripping of target
- Knockout from projectile
- Data about ⁹Li n interaction are encapsulated in process amplitude;
- One should analyze influence of reaction mechanism on ¹⁰Li continuum population.

Experimental studies of ¹⁰Li II (Some history)

T. Fortune, EPJA 54 (2018) 51

Table 13. Results of various experiments for low-lying states of ¹⁰Li (energies and widths in MeV).

Year	Reaction	Er	Г		Ref.
1997	¹⁰ Be(¹² C, ¹² N)	0.24(4)	0.10(7)		[243]
1999	⁹ Be(⁹ Be, ⁸ B)	0.50(6)	0.40(6)		[244]
1999	fragmentation	< 0.05		S	[245]
2001	<i>p</i> removal from ¹¹ Be			g.s. is s	[246]
2003	⁹ Li(<i>d, p</i>)	0.35(11)	< 0.32		[242]
		or < 0.2	-		
		plus 0.77(24)	< 0.62		
2006	⁹ Li(<i>d, p</i>)	~ 0		S	[247]
		~ 0.38	~ 0.2	р	
2015	2p removal from ¹² B	0.11(4)	0.2		[248]
		0.50(10)	0.8	both p	
2016	¹¹ Li(<i>p, d</i>)	0.62(4)	0.33(7)	р	[249]

 ¹⁰Li has been studied many times

Interpretation of the results of different works contradict each other.

Experimental studies of ¹⁰Li III (Summary)

Experiments with RIB provide qualitative improvement of experimental data

 $^{10}\mathrm{Li}\ \mathrm{structure}$

single-particle p-wave resonance with

 $E_r \sim 0.6 \,\,\mathrm{MeV}$

- $?\,$ virtual state vs. $s\mbox{-wave}$ resonance
- ? value of spin-spin splitting

Studies of continuum in direct reactions

For better understanding of continuum populated in direct one should estimate effects connected with Initial State Structure and Reaction mechanism.

Model with source

$$T_{IF} = \left\langle \Psi_{I} | V | \Psi_{F} \right\rangle;$$

$$\Psi_{F} = \Psi_{10_{\text{Li}}} \Psi';$$

$$T_{IF} \sim \left\langle \Phi \middle| \Psi_{10_{\text{Li}}} \right\rangle$$

- ▶ Ψ_{10Li} Wave Function responsible for (FSI)
- Φ source function (responsible for ISS)
- It is possible to study the scale of ISS effects using the model with source.

Model Source

$$\Phi = C_0 r^{l+1} \exp\left[C_1 r / r_0\right]$$

- r_0 effective size of source;
- "compact" source correspond to transfer reactions
- "large" source correspond to knockout from drip-line nuclei

$\Psi_{10}{}_{\rm Li}$

- one-channel SE solution
- Woods-Saxon potential

ISS and FSI effects on example of ^{10}Li

p-wave

- s-wave (and p-wave far away from peak) behavior drastically change with the source size variation
- It is important to accurately treat ISS-effects for spectrum decomposition.

Possible ¹⁰Li spectrum decomposition

- One can not make unique decomposition of ¹⁰Li spectrum using only exclusive spectrum (decay energy distribution).
- One needs to treat reaction mechanism effects in conjunction with detector efficiency.

¹¹Li ground state calculations

Approximation

- s- and p-wave potentials reproduce ¹⁰Li
- ss-split is neglected
- core spin is neglected
- ► We reproduce g.s. energy
- Collective potential $V_3 \sim 0.06 \text{ MeV}$
- $\blacktriangleright~r_{\rm mat.}\sim 3.1-3.2~{\rm fm}~(r_{\rm mat.}({\rm Exp})=3.31~{\rm fm}$)

Summary

- \blacktriangleright The problem of 10 Li nuclear system is a partial case of quite general problem.
- ▶ Reaction mechanism can significantly modify spectral density behavior.
- Using simple approximation we qualitatively reproduce ¹⁰Li spectrum and ¹¹Li ground state.