

Faculty of Physics, Lomonosov MSU Flerov Laboratory of Nuclear Reactions, JINR

DIFFUSENESS OF NUCLEON DENSITY DISTRIBUTION AND DOUBLE-FOLDING NUCLEUS-NUCLEUS POTENTIAL

<u>Makar Simonov</u> Alexander Karpov Tatyana Tretyakova

NUCLEUS-2022

Fundamental problems and applications

11-16 July 2022, Moscow

Low-energy reactions with heavy ions

Evolution of the system of colliding nuclei is determined by:

- nucleon density distribution in divided nuclei
- orientation and incident energy
- nucleon-nucleon interaction

- 1 deep inelastic scattering
- 2 quasi-fission

Low-energy reactions with heavy ions

Evolution of the system of colliding nuclei is determined by:

- nucleon density distribution in divided nuclei
- orientation and incident energy
- nucleon-nucleon interaction

The key feature which is needed to evaluate probabilities of processes is barrier on the potential energy surface.

1 – deep inelastic scattering2 – quasi-fission

Near-barrier reactions

Two collision regime:

- diabatic (fast)
- adiabatic (slow)

Diabatic and adiabatic potential coincide before the *contact point*.

Objectives:

- 1. Investigate the impact of *nucleon density* parameters on the profile of diabatic potential
- 2. Calculate *diabatic potential* for spherical nuclei
- 3. Evaluate changes in *surface diffuseness* during near-barrier reaction

$$V_{diab}(r) = V_{NN}(r) + V_{Coulomb}(r)$$

Double-folding potential

- 1. Double-folding potential: $V_{NN}(r) = \int_{V_1} \rho_1(r_1) \int_{V_2} \rho_2(r_2) v_{NN}(r + r_2 r_1) d^3r_2 d^3r_1$
- 2. Migdal potential: $v_{NN}(r_{12}) = C \left| F_{ex} + (F_{in} F_{ex}) \frac{\rho_1(r_1) + \rho_2(r_2)}{\rho_2(0) + \rho_2(0)} \right| \delta(r_{12})$
- 3. Total nucleon density:

$$\rho_{1,2}(r) = \rho_{1,2}^{p}(r) + \rho_{1,2}^{n}(r),$$

$$\rho(r) = \frac{\rho_{0}}{1 + \exp\left(\frac{r - R_{0}}{a}\right)} \text{ for } p, n$$

4. Spherical nuclei $Z \ge 8$, $N \ge 8$

Charge density parameters

Exp. data: I. Angeli et al. ADNDT 99, 69 (2013). *Fit is proposed*: B. Nerlo-Pomorska et al. Zeits. für Phys. A 348 (1994). *Exp. data*: *H. de Vries et al. ADNDT 36, 495–536 (1987).*

Makar Simonov et al.

Neutron density parameters

Exp. data and fit: J. Jastrzebski et al. IJMP E, v. 13. (2004)

Transformation of density parameters

Diffuseness

$$a_p = a_n = a_{ch} - 0.03 = 0.52 \text{ fm}$$

Approximation: Lima G. et al. Nucl. Phys A 735(3-4), 303 (2004).

Makar Simonov et al.

An example of density calculation

Makar Simonov et al.

Diabatic potential

Bass potential: R. Bass. Nucl. Reactions $V_{\text{Bass}}(R) = \frac{Z_1 Z_2 e^2}{R} - \frac{R_1 R_2}{R_1 + R_2} g(R)$ with Heavy Ions. Springer, 1980.

Makar Simonov et al.

Variation of diffuseness

Correction of diffuseness

Corrected densities

Corrected potentials

Conclusion

- 1. Experimental data on the **rms. charge radius**, the **charge diffuseness**, and the **neutron skin thickness** were analyzed.
- 2. Double-folding potential is calculated for spherical nuclei with $Z \ge 8$, $N \ge 8$ in the "frozen" density approximation.
- 3. It was found that the calculation carried out with the nucleon density for **isolated nuclei** leads to a potential that **differs significantly** from the Bass barrier.
- 4. For a more accurate assessment of the position of the Coulomb barrier, the **diffuseness** values were **corrected**. A **new approximation** for the diffuseness was proposed.

Thank you for your attention!

Makar Simonov et al.

NUCLEUS-2022

2 / 14

Migdal potential parameters

Effective nucleon-nucleon Migdal potential:

$$v_{NN}(r_{12}) = C \left[F_{ex} + (F_{in} - F_{ex}) \frac{\rho_1(r_1) + \rho_2(r_2)}{\rho_2(0) + \rho_2(0)} \right] \delta(r_{12}), \quad F_{ex(in)} = f_{ex(in)} \pm f'_{ex(in)}$$

<i>C,</i> MeV·fm ⁻³	f _{in}	f_{ex}	f _{in} '	f_{ex} '	
300	0.09	-2.59	0.42	0.54	

A. B. Migdal. The Theory of Finite Fermi-Systems and Properties of Atomic Nuclei, 2-nd ed. (Nauka, Moscow, 1983) [in Russian].

Bass potential:

$$V_{\text{Bass}}(R) = \frac{Z_1 Z_2 e^2}{R} - \frac{R_1 R_2}{R_1 + R_2} g(\xi) \qquad g(\xi) = \begin{bmatrix} A \exp (\xi) \\ \xi = R - (R_1 + R_2) \end{bmatrix}$$

$$g(\xi) = \left[A \exp\left(\frac{\xi}{d_1}\right) + B \exp\left(\frac{\xi}{d_2}\right)\right]^{-1}$$

<i>A,</i> MeV ⁻¹ ·fm	<i>B,</i> MeV⁻¹∙fm	$d_{ u}$ fm	<i>d₂,</i> fm
0.03	0.0061	3.3	0.65

R. Bass. Nuclear Reactions with Heavy Ions. Berlin: Springer, 1980.

Makar Simonov et al.

Density parameters

					a_p (+F	Pb-208)	RO	_р	RO	_n	R_p	_rms	R_n	_rms	R_ch_rm
z	Α	rho0_p	rho0_n	rho_tot	Old	New	Old	New	Old	New	Old	New	Old	New	s
8	16	0.1002	0.1061	0.2063	0.52	0.558	2.340	2.290	2.283	2.232	2.650	2.729	2.620	2.700	2.759
20	40	0.0869	0.0900	0.1769	0.52	0.590	3.568	3.502	3.521	3.454	3.373	3.488	3.343	3.459	3.459
20	48	0.0777	0.0955	0.1732	0.52	0.588	3.720	3.658	3.905	3.846	3.470	3.578	3.590	3.695	3.554
28	60	0.0793	0.0880	0.1674	0.52	0.607	4.181	4.108	4.227	4.154	3.772	3.900	3.802	3.929	3.849
40	90	0.0734	0.0867	0.1601	0.52	0.628	4.891	4.811	4.992	4.914	4.253	4.397	4.323	4.465	4.322
50	124	0.0672	0.0896	0.1568	0.52	0.639	5.463	5.382	5.667	5.589	4.652	4.799	4.797	4.939	4.716
62	144	0.0686	0.0851	0.1537	0.52	0.658	5.849	5.760	5.982	5.895	4.926	5.088	5.021	5.179	4.985
82	208	0.0632	0.0883	0.1515	0.52	0.673	6.635	6.547	6.856	6.770	5.491	5.654	5.651	5.809	5.544
36	86	0.0716	0.0902	0.1617	0.52	0.608	4.753	4.687	4.922	4.858	4.158	4.277	4.275	4.390	4.229
54	136	0.0660	0.0899	0.1559	0.52		5.650		5.868		4.784		4.940		4.846

Makar Simonov et al.

Radius parametrization

New parametrization of available in literature analytical formulas for rms charge radius $\langle r^2 \rangle_{ch}^{1/2}$ for nuclei with $Z \ge 8$ and $A \ge 16$, based on experimental data

	Формула	Параметры	Станд. откл. σ , фм
	$R = r_A A^{1/3}$	$r_A = 0.9524(7)$	0.095
	$R = r_f Z^f$	$r_f = 1.357(7), f = 0.3168(12)$	0.067
	$R = r_f A^f$	$r_f = 1.1446(56), f = 0.2957(10)$	0.059
Z	$R_{rms} = (a + \frac{b}{c^2 + Z^2})A^{1/3}$	$a = 0.938(10), b = 36(3), c^2 = 223(5)$	0.059
	$R_s = \left(r_{0,s} + \frac{r_{1,s}}{A^{2/3}} + \frac{r_{2,s}}{A^{4/3}}\right) \cdot A^{1/3}$	$\begin{split} r_{0,s} &= 0.9207(25), r_{1,s} = 0.613(9), \\ r_{2,s} &= 3.59(67) \end{split}$	0.051
D	$R_{\alpha,\alpha^2} = a + bA^{1/3} + c\alpha + dA^{1/3}\alpha^2$	a = 0.484(10), b = 0.880(2), c = -1.098(56), d = 0.338(42)	0.041
NP	$R_{\alpha,A} = r_A \left(1 - b\alpha + c\frac{1}{A}\right) A^{1/3}$	$r_A = 0.9560(14)$ фм, $b = 0.1527(67), c = 2.326(63)$	0.041

Neutron excess $\alpha = (N - Z)/A$:

Exp. data: I. Angeli et al. At. Data Nucl. Data Tables 99, 69 (2013). Fit D: J. Duflo. Nuclear Physics A 576 (1994). Fit NP: B. Nerlo-Pomorska et al. Zeitschrift f^{*}ur Physik A 348 (1994).

Makar Simonov et al.

Impact of deformation

Source: V. Zagrebaev, W. Greiner. Nucl. Phys A 944(2015)257–307

New data on the neutron skin

Old fit (red): J. Jastrzebski et al. IJMP E, v. 13. (2004) New data and fit: J. Zhang et al. Phys. Rev. C 104, 034303 (2021)