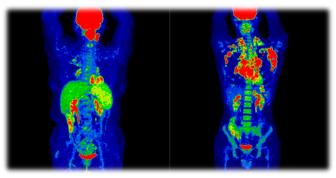
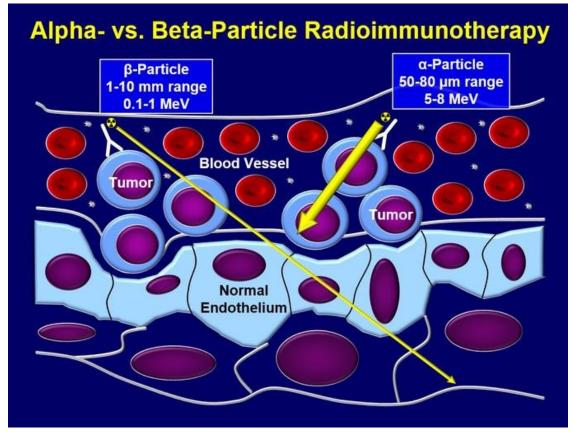

Laboratory Generator for ²¹²Pb Production

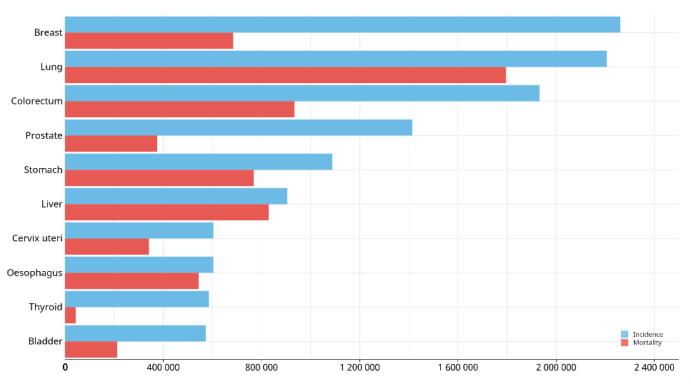
A.A. Artyukhov, B.V. Egorova, <u>K.V. Kokov</u>, T.M. Kuznetsova, A.V. Kurochkin, K.A. Makoveeva, D.Yu. Chuvilin

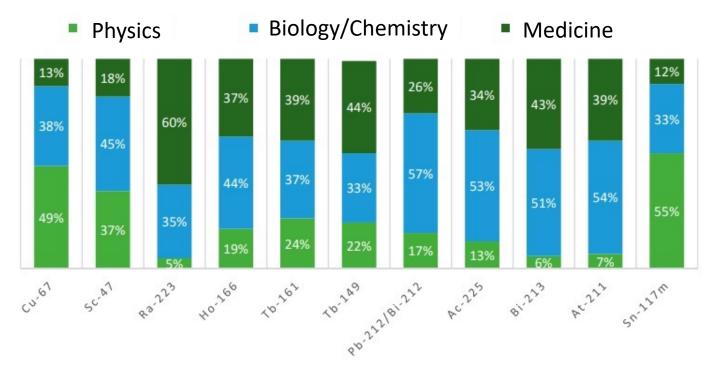
Physical and Chemical Technology Complex

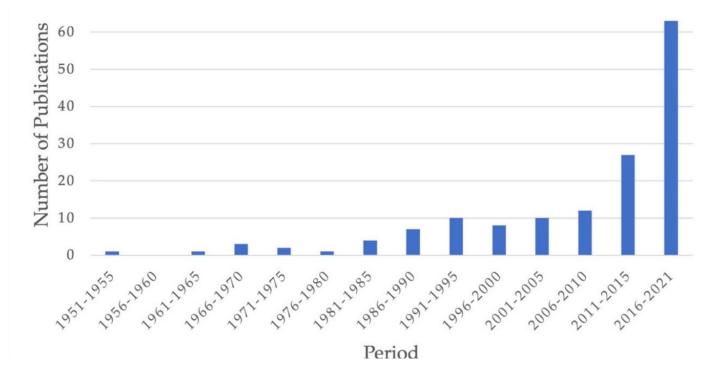

NUCLEUS-2022

Radionuclide Therapy (Targeted Therapy)




Radionuclide Diagnostics


Targeted Therapy



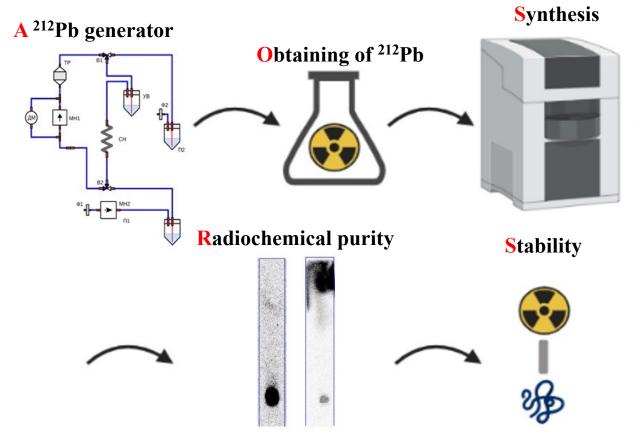
Estimated number of incident cases and deaths worldwide, both sexes, all ages

Cancer is currently one of the most common causes of death among the population (10 million deaths in 2020)

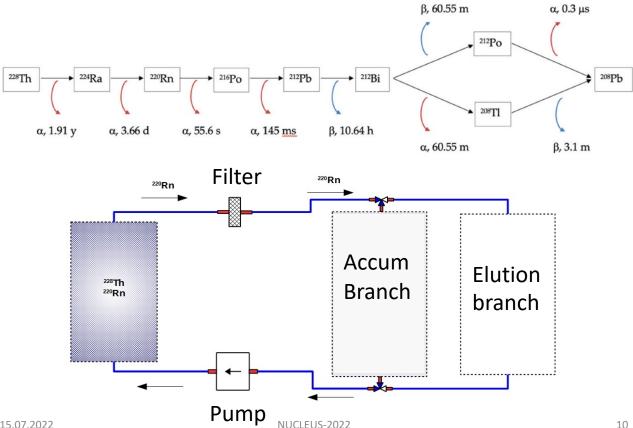
Publications on the use of therapeutic radionuclides (2008 - 2018)

Dynamics of publications on the use of lead-212 in nuclear medicine

Goals of Investigation

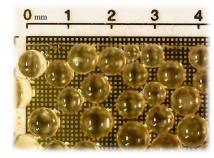

The aim of this work was **to obtain compounds based on** ²¹²Pb for potential radiopharmaceutical applications.

To achieve the goal, the following tasks were solved:


- To create a laboratory ²¹²Pb generator based on the parent ²²⁸Th ($T_{1/2} = 1.91$ y). Confirm the radionuclide purity of the resulting product.
- To carry out the synthesis of compounds for targeted delivery containing accumulated ²¹²Pb as a therapeutic agent.
- Determine the degree of stability of the synthesized compounds in biological relevant media.
- Demonstrate the presence of a cytotoxic effect of the synthesized compound based on ²¹²Pb in *in vitro* experiments.

NUCLEUS-2022

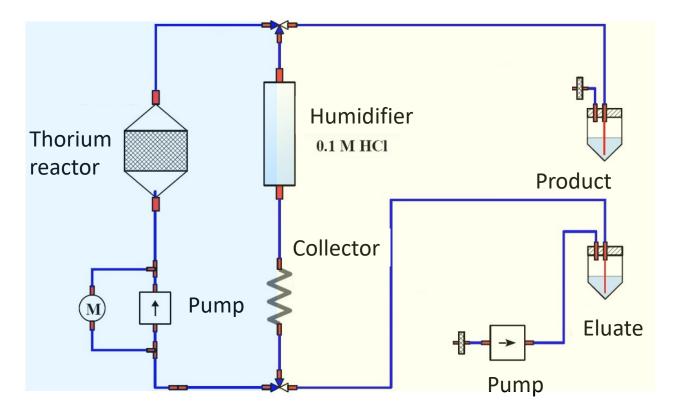
Plan of Investigation



²¹²Pb Obtaining Principle

Generator Source

- ${}^{232}\text{U}/{}^{233}\text{U}$ isolation (50 years) resulted in Thorium source: ${}^{229}\text{Th} - 6,81\%$; ${}^{230}\text{Th} \cong 0,08\%$; ${}^{228}\text{Th} \cong 0,02\%$; ${}^{232}\text{Th} - 93,11\%$
- Sorption on strong anion exchange resin in 8 M HNO₃ medium: formation of Th(NO₃)₅⁻ (2%), Th(NO₃)₆²⁻ (98%)

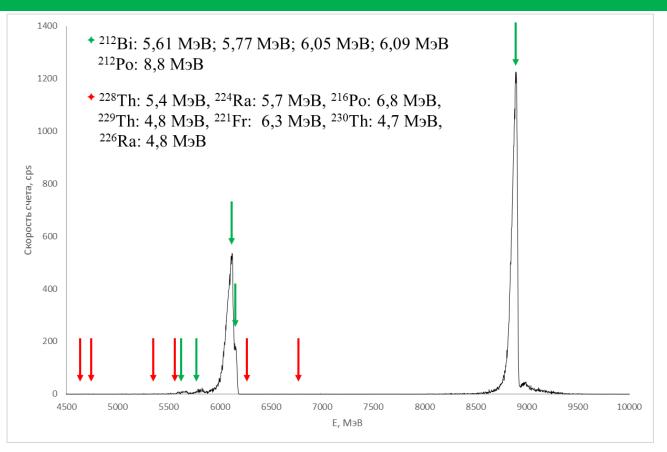

Advantages of α-emitters:

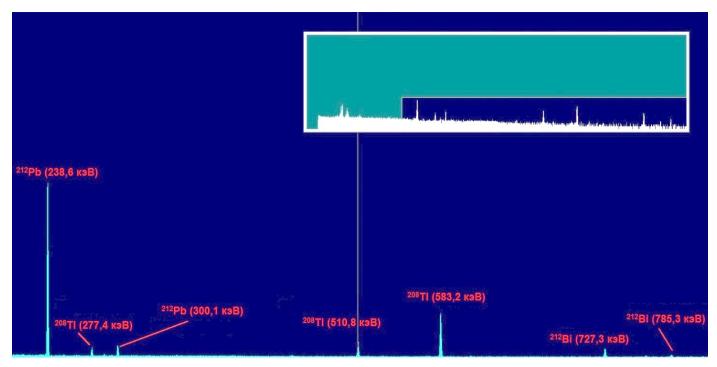
- The passage of 2-4 α -particles through the nucleus causes death with a probability of 40%
- Efficient in small clusters, reducing the likelihood of recurrence

Benefits of ²¹²Pb:

- ²¹²Pb β -emitter (T_{1/2} 10.64 h) *in vivo* ²¹²Bi α -emitter generator (T_{1/2} 1 h)
- The presence of a diagnostic pair 203 Pb (γ -line 279 keV)

²²⁸Th/²¹²Pb generator


²²⁸Th/²¹²Pb generator


Generator Product

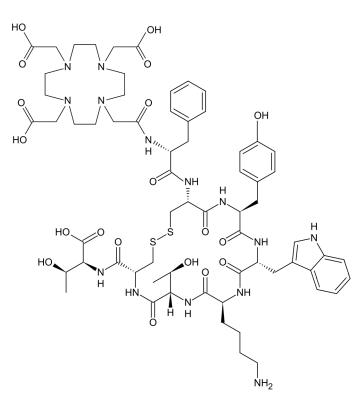
Parameter	Value			
рН	1,0			
Volume activity	max 4.0 MBq/ml			
Radioactive impurities	Less than detection limit			
Chemical impurities	Fe	0.12	ppm	
	Pb	0.05	ppm	
	Cu	0.005	ppm	
	Zn	0.003	ppm	
	As	0.13	ppm	
	Others	< 0.5	ppm	
Eluate	0.1 M HCl			
Half-life	10.64 h			
Description	Transparent liquid			

Alpha-Spectrum of Generator Product

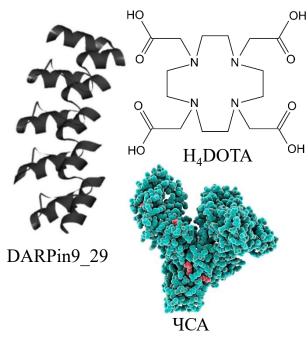
Gamma-Spectrum of Generator Product

High-purity germanium detector (ORTEC)

Targeted Alpha Therapy: DOTATATE


DOTATATE (**DOTA-(Tyr³)-octreotate**)

Synthetic octapeptide DOTATATE (DOTA-DPhe-Cys-Tyr-DTrp-Lys-Thr-Cys-Thr)

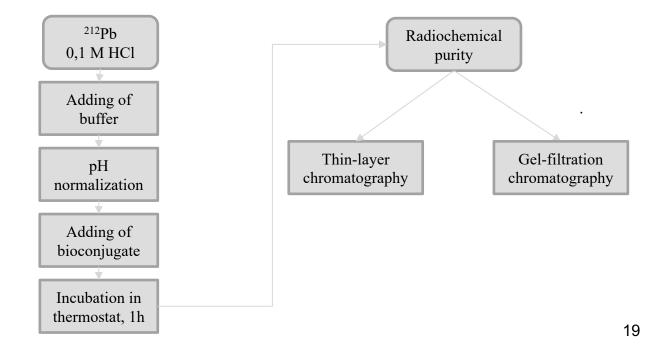

1,0 mg/ml

1,5 kDa

High affinity to **SSTR-antigen** (neuroendocrine tumors)

Targeted Alpha Therapy: DARPin9_29

DARPin, англ. «designed ankyrin repeat proteins»

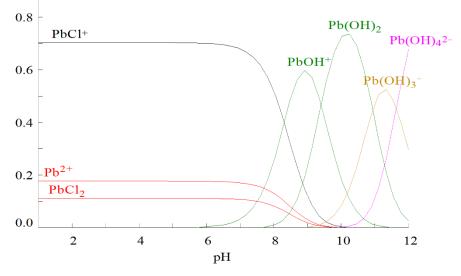

DOTA-HSA-DARPin9_29 (S.M. Deev, RAS)

Conjugate of DARPin (8 kDa), human serum albumine (HSA) and chelator DOTA

1,0 mg/ml 95 kDa High affinity to **HER2-antigen** (breast cancer)

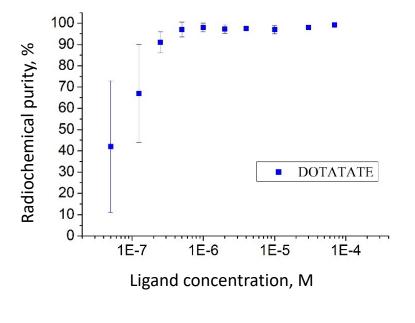
Complexation with HSA (69 kDa) increases half-life in blood: if nanoparticle size is less than 60-65 kDa, the particle lifetime in blood is only 1,5-2 h!

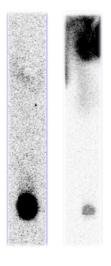
Radiolabeling and Preparation



Synthesis [²¹²Pb]DOTATATE

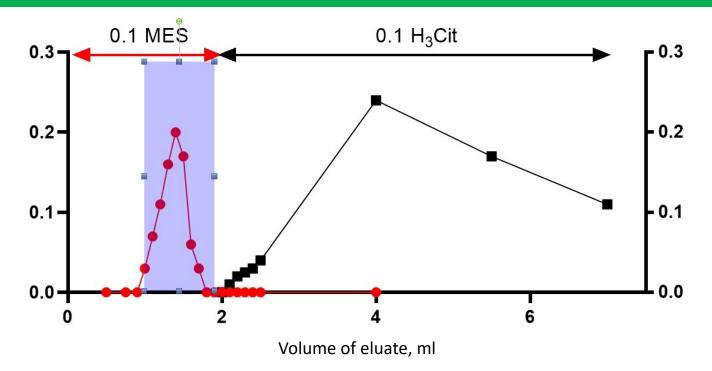
[²¹²Pb]DOTATATE:


- Complexation within pH > 5.0
- ²¹²Pb in 0,1 M HCl (pH 1,0)
- 2 M Na₂CO₃ for pH 5,5
- DOTATATE $\leq 7 \cdot 10^{-5} \text{ M}$


- Raising the pH to deprotonate and prevent DOTATATE from entering a strongly acidic environment
- Adding buffer to prevent hydrolysis, maintain ionic form while increasing pH

NUCLEUS-2022

Synthesis of [²¹²Pb]DOTATATE



[²¹⁰Pb]DOTATATE (left) ^{[210}Pb]DTPA (right)

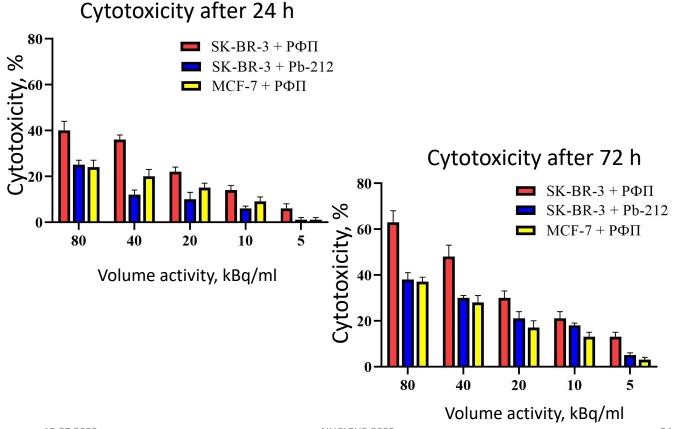
10⁻¹⁰ M of ²¹²Pb $5 \cdot 10^{-8} \text{ M} \le \text{DOTATATE} \le 10^{-4} \text{ M}$

²¹²Pb in 0.1 M HCl, pH 1.0

Synthesis of [²¹²Pb]DOTA-HSA-DARPin9_29

- Peak separation at 2 ml eluate volume (fractionation threshold 5 kDa)
- The radiochemical purity at the time of fraction separation was 82 ± 5% 15.07.2022
 NUCLEUS-2022

Stability of Complexes


[²¹²Pb]DOTATATE

Medium	1 h	3 h	6 h	10 h	
Serum	83 ± 5	77 ± 7	84 ± 7	88 ± 5	
(1:10)					
NaCl 0,9%	96 ± 3	95 ± 5	94 ± 4	96 ± 4	

[²¹²Pb]DOTA-HSA-DARPin9_29

Medium	1 h	2 h	3 h
Serum (1:1)	96 ± 3	99 ± 5	94 ± 3
NaCl 0,9%	92 ± 3	93 ± 5	94 ± 4

Cytotoxic Effect in vitro

NUCLEUS-2022

Summary

1. A laboratory generator has been developed that makes it possible to continuously obtain ²¹²Pb with a yield of up to 50%. The content of long-lived parental radionuclides in the ²¹²Pb solution is a value that does not exceed the detection threshold on the α -spectrometer, which makes it possible to exclude operations for its purification.

2. It was shown that the complexation of ²¹²Pb and the DOTATATE and DOTA-HSA-DARPin9_29 molecules occurs efficiently (radiochemical purity max 99% and 85%, respectively) at synthesis temperatures of 90°C and 60°C, respectively.

3. Stability of the synthesized complexes remains at a level of at least 95% in isotonic solution, and in blood serum - at least 80-85%, which indicates prolonged therapeutic potential of the synthesized compounds over time.

4. The cytotoxic effect of the synthesized compound based on ²¹²Pb and DARPin9_29 on target cancer cells was also demonstrated.

Thank you for attention!