Model study of the energy dependence of the correlation between anisotropic flow and the mean transverse momentum in Au+Au collisions

Petr Parfenov¹, Arkadiy Taranenko¹, Niseem Magdy², Roy A. Lacey³

- 1. National Research Nuclear University MEPhI, Moscow, Russia
 - 2. University of Illinois at Chicago, Chicago, IL, USA
 - 3. State University of New York, Stony Brook, NY, USA

LXXII International conference "Nucleus-2022: Fundamental problems and applications" 11-16 July 2022

Outline

- Introduction
 - Anisotropic collective flow
 - $v_n [p_T]$ correlation coefficient
- Results
 - Sensitivity of $v_n [p_T]$ correlation to η/s
 - Comparison of $v_n [p_T]$ correlation measured from vHLLE+UrQMD, AMPT, EPOS
 - Beam energy dependence of $v_n [p_T]$ correlation
 - Dependence of $v_n [p_T]$ correlation on the event shape
- Summary and outlook

Anisotropic collective flow

Gale, Jeon, et al., Phys. Rev. Lett. 110, 012302

$$\frac{dN}{d\varphi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos[n(\varphi - \Psi_n)], \qquad v_n = \langle \cos[n(\varphi - \Psi_n)] \rangle$$

 $v_n(p_T, \text{centrality})$ - sensitive to the early stages of collision. Important constraint for transport properties (EoS, η/s , ζ/s , etc.)

Uncertainty in the extraction of η/s originate from uncertainty in the estimates for the initial-state eccentricities in the model – a new observable must be constructed

vHLLE+UrQMD model for anisotropic flow at RHIC/LHC

UrQMD + 3D viscous hydro model vHLLE+UrQMD

Iurii Karpenko, Comput. Phys. Commun. 185 (2014), 3016 <u>https://github.com/yukarpenko/vhlle</u> Parameters: from Iu. A. Karpenko, P. Huovinen, H. Petersen, M. Bleicher, Phys. Rev. C91 (2015) no.6, 064901 – good description of STAR BES results for v_2 of inclusive charged hadrons (7.7-62.4 GeV)

<u>Initial conditions:</u> model UrQMD <u>QGP phase:</u> 3D viscous hydro (vHLLE) with crossover EOS (XPT) <u>Hadronic phase:</u> model UrQMD

Z.W. Lin, C. M. Ko, B.A. Li, B. Zhang and S. Pal: Physical Review C 72, 064901 (2005).

FANI-2021

Analysis method • A + C: v_n^2 measurements • B: $[p_T]$ measurements

Covariance is calculated using 3 subevents:

$$cov(v_n^2, [p_T]) = \left\langle \frac{1}{N_A N_C} \sum_{A,C} e^{in(\varphi_a - \varphi_c)} \left(\left[p_{T,b} \right] - \left\langle [p_T] \right\rangle \right) \right\rangle$$

Dynamical variance of v_n^2 :

$$Var(v_{n}^{2})_{dyn} = v_{n}\{2\}^{4} - v_{n}\{4\}^{4} = C_{2}^{2}\{2\} - C_{2}\{4\},$$

$$C_{2}^{2}\{2\} = \langle\langle 2\rangle\rangle\Big|_{A,C} = \left\langle\langle e^{2i(\varphi_{1}^{A} - \varphi_{2}^{C})}\rangle\right\rangle, C_{2}^{2}\{4\} = \langle\langle 4\rangle\rangle\Big|_{A,C} - 2\langle\langle 2\rangle\rangle^{2}\Big|_{A,C},$$

$$\langle\langle 4\rangle\rangle\Big|_{A,C} = \left\langle\langle e^{2i(\varphi_{1}^{A} + \varphi_{2}^{A} - \varphi_{3}^{C} - \varphi_{4}^{C})}\rangle\right\rangle$$

Variance of the mean transverse momentum:

$$c_k = \left\langle \frac{1}{N_B(N_B - 1)} \sum_{b \neq b'} \left(p_{T,b} - \langle [p_T] \rangle \right) \left(p_{T,b'} - \langle [p_T] \rangle \right) \right\rangle, [p_T] = \frac{1}{N_B} \sum_b p_T, b$$

Event shape engineering (ESE)

 Au+Au events with different initial-state configurations are selected using reduced flow vector for a given centrality 10-50%:

$$q_{2} = \frac{\sqrt{Q_{2,x}^{2} + Q_{2,y}^{2}}}{\sqrt{N_{D}}}, \qquad Q_{2,x} = \sum_{D} \cos(2\varphi_{d})$$
$$Q_{2,y} = \sum_{D} \sin(2\varphi_{d})$$

• q_2 was measured in the subevent D (1.5 < η < 2.5)

Summary

The model predictions for the $\rho(v_n^2, [p_T])$, $cov(v_n^2, [p_T])$, $\sqrt{c_k}/\langle p_T \rangle$, $Var(v_n^2)_{dyn}$ in Au+Au collisions at $\sqrt{s_{NN}}$ =19.6-200 GeV were investigated using vHLLE+UrQMD hybrid model

Sensitivity of $v_n - [p_T]$ correlation to η/s :

- $Var(v_n^2)_{dyn}$ and $cov(v_n^2, [p_T])$ decrease with increasing values of η/s
- $\sqrt{c_k}/\langle p_T \rangle$ and $\rho(v_n^2, [p_T])$ show weak dependence on η/s

Comparison of the results from vHLLE+UrQMD with AMPT and EPOS models:

- Good overall agreement between vHLLE+UrQMD, AMPT and EPOS models
- Reasonable agreement with the values estimated from the experimental measurements

Beam-energy dependence of $v_n - [p_T]$ correlation:

- $Var(v_n^2)_{dyn}$ and $cov(v_n^2, [p_T])$ increase with increasing beam energy $\sqrt{s_{NN}}$
- $\sqrt{c_k}/\langle p_T \rangle$ and $ho(v_n^2, [p_T])$ show weak dependence on $\sqrt{s_{NN}}$

Event-shape dependence of $v_n - [p_T]$ correlation:

- $\sqrt{c_k}/\langle p_T \rangle$ show weak q_2 dependence
- $cov(v_n^2, [p_T])$ and $\rho(v_n^2, [p_T])$ increase with increasing q_2

Outlook

- Investigate beam-energy and event-shape dependence of the $v_3 [p_T]$ correlation using vHLLE+UrQMD model
- Investigate feasibility of $v_2 [p_T]$ correlation measurements for lower beam energies where effect of spectators shadowing is prevalent in the development of v_2
- Study sensitivity of $v_2 [p_T]$ correlation to different equation of states in models within mean-field approach at lower beam energies

Thank you for your attention!

Backup slides

Relations with initial-state variables for v_n and $|p_T|$

 $\langle p_t \rangle (\mathrm{MeV})$

- For v_2 and v_3 :
 - $v_n = \kappa_n \varepsilon_n$
- For $[p_T]$:
 - $[p_T] \propto R, R^2 = 2 \frac{\int (x^2 + y^2) s(\tau_0, x, y) dx dy}{\int s(\tau_0, x, y) dx dy}$ $[p_T] \propto A_e, A_e = \frac{\pi}{2} R^2 \sqrt{1 \varepsilon_2^2}$

 - $[p_T] \propto E_i, E_i = \tau_0 \int \epsilon(\tau_0, x, y) dx dy$

In hydrodynamical approach:

- At fixed total entropy S (i.e. fixed collision centrality) mean transverse momentum $[p_T]$ is determined by the energy of the fluid per unit rapidity E_i at the initial time τ_0
- In more general cases (S is not fixed), $[p_T] \propto E_i/S$

R. Franco, M. Luzum, Phys. Lett. B 806 (2020) 135518 G. Giacalone, et. al., Phys. Rev. C 103 (2021) 2, 024909 12.07.2022

