

TalysLib: a ROOT-based toolkit
for nuclear data access

N.A. Fedorov, I.D. Dashkov, Y.N. Kopatch, T.Yu.
Tretyakova and TANGRA collaboration

FLNP JINR

N.A. Fedorov, I.D. Dashkov, Y.N. Kopatch, T.Yu.
Tretyakova and TANGRA collaboration

FLNP JINR

Nucleus-2022Nucleus-2022

Introduction
Nuclear data represents measured (or evaluated)
probabilities of various physical interactions involving the
nuclei of atoms, as well as nuclear properties. It is needed for:

● Planning of new experiments
● Theoretical models testing
● Reference information in experimental data processing
● Developing of new nuclear facilities

Sources of nuclear data
Evaluated:

● ENDF (characteristics of
nuclear reactions)

● ENSDF (nuclear structure)
● AME (nuclear masses)
● RIPL (ENSDF+AME+model

parameters)
● TALYS program

etc...

Measured:
● EXFOR (“Raw

experimental data”)
● Pre-processed EXFOR

(C4, T4, EXFORTABLES)

Problems
● There is no C++/Python parser for this

data
● The EXFOR and ENDF data format is

quite complex to read
● One have to perform data

search/plotting/processing by hand
● It is interesting to compare your data with

other experiments/estimations and
calculations. In automatic mode

Talys

TalysLib
An object-oriented C++ library for nuclear data access

● TALYS is a powerful nuclear reaction calculation
program which uses RIPL-3 database

● ROOT is a data analysis framework used by high
energy physics and others

● TalysLib automates work with TALYS and its database
● TalysLib contains parser for ENDF and EXFOR

(EXFORTABLES)

TalysLib structure

● The TalysLib structure groups data to related objects.
● Each object has a pointer to parent object.

Usage examples
● Calculation of Q value for d(t,n)α reaction

user@jinr:~$ root -l

root [0] Nucleus d("2H"), t("3H"), n("n"), a("4He");

root [1] double Q=d.Mass+t.Mass-n.Mass-a.Mass

(double) 17.589895

root [2]

● Calculation and plotting 56Fe(p,p’1) angular
distribution

user@jinr:~$ root -l

root [0] Nucleus Fe("56Fe");

root [1] Fe.SetProjectileEnergy(20) //In MeV

root [2] Fe.GenerateProducts("p")

root [3] Fe.FindProductsByReaction("(p,p')")-
>Levels[1].GetAngularDistribution()->Draw("al")

mailto:user@jinr
mailto:user@jinr

Usage examples
● Calculation and plotting 56Fe(n,n’1) angular

distribution with ENDF and EXFOR

user@jinr:~$ root -l

root [0] Nucleus Fe("56Fe");

root [1] Fe.GenerateProducts()//14.1 MeV n by default

root [2] Nucleus* Fe2=Fe.FindProductByReaction("(n,n')")

root [3] g1=Fe2->Levels[1].
GetEXFORTMultiGraphForAngularDistributions(13,15)

//Find data in 13-15 MeV range

root [3] g2=Fe2->Levels[1].GetAngularDistribution()

root [4] g3=Fe2→Levels[1].
GetAngularDistribution(“ENDF”)

root [5] g1->Add(g2,”l”); g1->Add(g3,”l”);

g1->Draw(“ap”);

mailto:user@jinr

Usage examples
γ-spectrum decoding

● Decoding of the γ-
spectrum is a very
common task

● γ-transition data
from ENDF often
cannot be used
directly

● Usage of the
estimated cross-
section data could
be useful

Model parameters adjustment
● The MINUIT package

is used to minimize the
χ2

● The experimental data
is presented as D(x)
function

● Function C connects
the model parameters
and minimization
parameters

● F returns calculation
results in the same
representation as D(x)

Model parameters adjustment

Usage examples
Optical model fit

Conclusion
● There is a new automated way to get nuclear data
● There are a lot of bugs, but it works
● If somebody asks, we will add new features

https://github.com/terawatt93/TalysLib

https://github.com/terawatt93/TalysLib

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

