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Introduction
Nuclear data represents measured (or evaluated) 
probabilities of various physical interactions involving the 
nuclei of atoms, as well as nuclear properties. It is needed for:

● Planning of new experiments
● Theoretical models testing
● Reference information in experimental data processing
● Developing of new nuclear facilities



  

Sources of nuclear data
Evaluated:

● ENDF (characteristics of 
nuclear reactions)

● ENSDF (nuclear structure)
● AME (nuclear masses)
● RIPL (ENSDF+AME+model 

parameters)
● TALYS program

etc...

Measured:
● EXFOR (“Raw 

experimental data”)
● Pre-processed EXFOR 

(C4, T4, EXFORTABLES)



  

Problems
● There is no C++/Python parser for this 

data
● The EXFOR and ENDF data format is 

quite complex to read
● One have to perform data 

search/plotting/processing by hand
● It is interesting to compare your data with 

other experiments/estimations and 
calculations. In automatic mode



  

Talys



  

TalysLib
An object-oriented C++ library for nuclear data access

● TALYS is a powerful nuclear reaction calculation 
program which uses RIPL-3 database

● ROOT is a data analysis framework used by high 
energy physics and others 

●  TalysLib automates work with TALYS and its database
●  TalysLib contains parser for ENDF and EXFOR 

(EXFORTABLES) 



  

TalysLib structure

● The TalysLib structure groups data to related objects.
● Each object has a pointer to parent object. 



  

Usage examples
● Calculation of Q value for d(t,n)α  reaction

user@jinr:~$ root -l

root [0] Nucleus d("2H"), t("3H"), n("n"), a("4He");

root [1] double Q=d.Mass+t.Mass-n.Mass-a.Mass

(double) 17.589895

root [2]

● Calculation and plotting 56Fe(p,p’1) angular 
distribution

user@jinr:~$ root -l

root [0] Nucleus Fe("56Fe");

root [1] Fe.SetProjectileEnergy(20) //In MeV

root [2] Fe.GenerateProducts("p")

root [3] Fe.FindProductsByReaction("(p,p')")-
>Levels[1].GetAngularDistribution()->Draw("al")
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Usage examples
● Calculation and plotting 56Fe(n,n’1) angular 

distribution with ENDF and EXFOR

user@jinr:~$ root -l

root [0] Nucleus Fe("56Fe");

root [1] Fe.GenerateProducts()//14.1 MeV n by default

root [2] Nucleus* Fe2=Fe.FindProductByReaction("(n,n')")

root [3] g1=Fe2->Levels[1]. 
GetEXFORTMultiGraphForAngularDistributions(13,15) 

//Find data in 13-15 MeV range

root [3]  g2=Fe2->Levels[1].GetAngularDistribution()

root [4] g3=Fe2→Levels[1]. 
GetAngularDistribution(“ENDF”)

root [5] g1->Add(g2,”l”); g1->Add(g3,”l”); 

g1->Draw(“ap”); 
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Usage examples
γ-spectrum decoding

● Decoding of the γ-
spectrum is a very 
common task

● γ-transition data 
from ENDF often 
cannot be used 
directly

● Usage of the 
estimated cross-
section data could 
be useful



  

Model parameters adjustment
● The MINUIT package 

is used to minimize the 
χ2 

● The experimental data 
is presented as D(x) 
function

● Function C connects 
the model parameters 
and minimization 
parameters

● F returns calculation 
results in the same 
representation as D(x)  



  

Model parameters adjustment



  

Usage examples
Optical model fit



  

Conclusion
● There is a new automated way to get nuclear data
● There are a lot of bugs, but it works
● If somebody asks, we will add new features

https://github.com/terawatt93/TalysLib 

https://github.com/terawatt93/TalysLib
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