Contribution ID: 7

Type: Oral talk (15 min + 5 min questions)

SEARCH FOR ALPHA-CONDENSATE EFFECTS IN DISSOSIASION OF RELATIVISTIC NUCLEI

Friday, 15 July 2022 11:20 (20 minutes)

The BECQUEREL experiment is aimed at solving topical problems in nuclear cluster physics [1]. Due to its unique sensitivity and spatial resolution the used method of nuclear track emulsion (NTE) makes it possible, to study in a unified approach multiple final states arising in the dissociation of relativistic nuclei. The focus is a concept of α -particle Bose-Einstein condensate (α BEC) - the extremely cold state of several S-wave α -particles near the coupling threshold. The unstable ⁸Be nucleus is described as 2α BEC, and the 12 C(0_2^+) excitation or Hoyle state (HS) as 3α BEC. The state 16 O(0_6^+) above the 4α threshold, considered as 4α BEC, can sequentially decay 16 O(0_6^+) $\rightarrow \alpha^{12}$ C(0_2^+) or 16 O(0_6^+) $\rightarrow 2^8$ Be(0^+).

In NTE layers longitudinally exposed to relativistic nuclei the invariant mass of ensembles of He and H fragments can be determined from the emission angles in the approximation of conservation of initial momentum per nucleon. 8 Be and HS decays, as well as 9 B o 8 Bep decays, are identified in fragmentation of light nuclei by an upper constraint on the invariant mass [2]. Photos and videos of characteristic interactions are available on the site http://becquerel.jinr.ru/. This approach has been used to identify ⁸Be and HS and search for more complex states of α BEC in fragmentation of medium and heavy nuclei. Recently, based on the statistics of dozens of ⁸Be decays, an enhancement in the probability of detecting ⁸Be in an event with an increase in the number of relativistic α -particles in it was found [3]. A preliminary conclusion is drawn that the contributions from ⁹B and HS decays also increase. The exotically large sizes and lifetimes of ⁸Be and HS suggest the possibility of synthesizing α BEC by successively connecting the emerging α -particles $2\alpha \to {}^8\text{Be}, {}^8\text{Be}\alpha$ \rightarrow $^{12}\text{C}(0_2^+)$, $^{12}\text{C}(0_2^+)\alpha \rightarrow ^{16}\text{O}(0_6^+)$, $2^8\text{Be} \rightarrow ^{16}\text{O}(0_6^+)$ and further with a decreasing probability at each step, when γ -quanta or recoil particles are emitted. Nowadays, the main task is to clarify the relation between the appearance of 8 Be and HS and the multiplicity of α -ensembles and to search on this basis for decays of the $^{16}{
m O}(0_6^+)$ state. In this regard, the BECQUEREL experiment aims to measure multiple channels of $^{84}{
m Kr}$ fragmentation at energies up to 950 MeV per nucleon. There are a sufficient number of NTE layers, the transverse scanning of which on a motorized microscope makes it possible to achieve the required statistics. A status of the ongoing research is presented.

- P.I. Zarubin, Lect. Notes in Phys. 875, Clusters in Nuclei, Volume 3. Springer Int. Publ., 51 (2013); DOI: 10.1007/978-3-319-01077-9_3, arXiv: 1309.4881.
- D.A. Artemenkov et al., Eur. Phys. J. A 56 (2020) 250; DOI: 10.1140/epja/s10050-020-00252-3, arXiv: 2004.10277.
- 3. A.A. Zaitsev et al., Phys. Lett. B 820 (2021) 136460; DOI 10.1016/j.physletb.2021.136460, arXiv: 2102.09541.

Section

1. Nuclear structure: theory and experiment

Primary authors: ZAITSEV, Andrei; ZARUBIN, Pavel

Presenter: ZAITSEV, Andrei

Session Classification: Nuclear structure: theory and experiment