

SEARCH FOR ALPHA-CONDENSATE EFFECTS IN DISSOSIASION OF RELATIVISTIC NUCLEI

Andrei Zaitsev, JINR Dubna

Outline

- α-particle Bose-Einstein condensate;
- **BECQUEREL** Project:
 - Nuclear track emulsion;
- $N\alpha$ -states in relativistic dissociation;
- Summary.

The "Ikeda diagram", showing the development of the cluster structure within α -conjugate nuclei when the excitation energy is increased.

ON NUCLEAR REACTIONS OCCURRING IN VERY HOT STARS. I. THE SYNTHESIS OF ELEMENTS FROM CARBON TO NICKEL

AMD density of HS

BECQUEREL Project at Nuclotron/NICA

Within the framework of the project, a systematic study of the cluster structure of light nuclei is carried out. The project is based on the analysis of layers of nuclear emulsion longitudinally irradiated in primary and secondary nuclear beams with an energy of about 1 *A* GeV.

website: becquerel.jinr.ru

Nuclear emulsion technique Hair - 60 μm AgBr Crystal - 0.2 μm Atom - 10⁻⁴ μm

Proton - 10⁻⁹ μm

In general, the energy of a few-particle system Q is $Q = M^* - M$. M^* is the invariant mass defined by the sum of all products of 4-momenta $P_{i,k}$ fragments: $M^{*2} = \sum (P_i \cdot P_k)$. Subtraction of mass M is a matter of convenience. The 4-momenta $P_{i,k}$ are determined in the approximation of conservation of the initial momentum per nucleon. Then, the definition of Q comes down to determine the angles between the fragment emission directions.

Clustering in relativistic dissociation of nuclei

Clustering in relativistic dissociation of nuclei

The distribution over Q_{2a} of 2*a*-pairs ($N_{2a} = 500$), including "white" 2*a*-stars ($N_{ws} = 198$), indicates the condition $Q_{2a}(^{8}Be) < 0.2$ MeV. Then the fraction of decays ⁸Be 36 ± 3 and 41 ± 5%, respectively. Two "influxes" are worth to be mentioned around 0.6 and 3 MeV. The first of them corresponds to the decay via the ⁹Be 2.43 MeV excitation, and the second one corresponds to the decay from the first excited state ⁸Be₂₊.

Unstable ⁸Be nucleus in dissociation of light relativistic nuclei

Nucleus	$\langle \Theta_{2\alpha} \rangle$ (RMS),	$\langle Q_{2\alpha} \rangle$ (RMS),
$(P_0, A \text{ GeV}/c)$	mrad	keV
	$(Q_{2\alpha} < 300 \text{ keV})$	
¹² C (4.5)	$2.1 \pm 0.1 \ (0.8)$	109 ± 11 (83)
¹⁶ O (4.5)	$1.8 \pm 0.3 \ (0.6)$	81 ± 2 (50)
²² Ne (4.1)	$1.9 \pm 0.1 \; (0.8)$	82 ± 5 (52)
¹⁴ N (2.9)	$2.9 \pm 0.2 (1.9)$	120 ± 10 (72)
⁹ Be (2.0)	4.4 ± 0.2 (2.1)	86 ± 4 (48)
¹⁰ C (2.0)	$4.6 \pm 0.2 \ (1.9)$	63 ± 7 (83)
¹¹ C (2.0)	$4.8 \pm 0.3 \; (1.9)$	77 ± 7 (40)
	$5.3 \pm 0.5 (1.5)$	68 ± 17 (42)
$^{11}\mathrm{C}~(2.0) \rightarrow$	$4.5 \pm 0.3 \ (1.3)$	94 ± 15 (86)
${}^{9}\text{B} \rightarrow {}^{8}\text{Be}$		
¹⁰ B (1.6)	$5.9 \pm 0.2 (1.6)$	101 ± 6 (46)
¹⁰ B (1.6)	5.6 ± 0.3 (1.3)	105 ± 9 (47)
\rightarrow $^{9}B \rightarrow$ ^{8}Be		
¹² C (1.0)	10.4 ± 0.5 (3.9)	107 ± 10 (79)

Eur. Phys. J. A 56, 250 (2020)

The dependence of the calculated invariant masses of α pairs $Q_{2\alpha}$ on the angles of $\Theta_{2\alpha}$ expansion into them in the events of dissociation ${}^{12}C$, ${}^{11}C$ and ${}^{10}B$ nuclei; the momentum values are indicated in brackets (A GeV/c).

Correlation in ⁸Be nucleus formation and α-particle multiplicities

3α-particle events – Hoyle state

Distribution of the number of 3 α -triplets $N_{3\alpha}$ over the invariant mass $Q_{3\alpha}$ of 316 "white" stars: ${}^{12}C \rightarrow 3\alpha$ (solid) and 641 "white" stars: ${}^{16}O \rightarrow 4\alpha$ (dashed) at 3.65 A GeV; the inset: the enlarged view of distributions in the region of $Q_{3\alpha} < 2$ MeV normalized to the number of "white" N_{ws} stars in the both cases. The obtained ratios: $N_{HS}({}^{12}C)/N_{8Be}({}^{12}C) = 0.36 \pm 0.06 \text{ M} N_{HS}({}^{16}O)/N_{8Be}({}^{16}O) = 0.35 \pm 0.04$.

Observation of Na states in heavier nuclei

167

	$E_{\rm x}$ (MeV \pm keV)	$J^{\pi}; T$	K^{π}	$\Gamma_{ m c.m.}$ or $ au_{ m m}$ (keV)	Decay	
	14.620 ± 20	$4^{(+)}$		490 ± 15	α	
	14.660 ± 20	5^{-}	0-	670 ± 15	α	Low lying 0^+ levels of ¹⁶ 0
	14.8153 ± 1.6	$6^+; 0$		70 ± 8	α	E (MeV) $\begin{pmatrix} 0_6^+ \end{pmatrix}_{000}$
	14.926 ± 2 15.097 ± 5	2^+ 0 ⁺		54 ± 5 166 ± 30	\mathbf{p}, α	$15 = \frac{15.2}{4\alpha \text{ threshold}}$
	15.196 ± 3	$2^{-};0$		63 ± 4	p, α p, α	$\begin{bmatrix} 14.0 \\ 13.6 \end{bmatrix}_{OCM}$
	15.26 ± 50	$2^+;(0)$		300 ± 100	\mathbf{p}, α	12.1 $(0_4^+)_{\rm OCM}$
						10 $(0_3^+)_{\rm OCM}$
						$\alpha + {}^{12}C$ threshold
						(0^+)
100			-	And a water of the law have a		- 6.06 (° ₂) _{OCM}
- 1.	100000					5 -
Ta-	the second second				:	
-	-	- 11		1 100 Mar 10		$\left(0^{+}\right)$
AT LOW		4			α	0(°1) _{OCM}
	Torne			- an oracle of a state	2α	-
					-α	

α -four events in ¹⁶O

HS can occur as a result of α decay of the 0^+_6 excitation of the 16 O nucleus. The distribution of "white" 16 O $\rightarrow 4\alpha$ stars over the invariant mass of 4α -quartets $Q_{4\alpha}$ (left) is described by the Rayleigh distribution with $\sigma_{Q4\alpha} = (6.1 \pm 0.2)$ MeV. The condition $Q_{3\alpha}$ (HS) < 700 keV shifts the $Q_{4\alpha}$ distribution and indicates 9 events: $Q_{4\alpha} < 1$ MeV with $\langle Q_{4\alpha} \rangle$ at (RMS) = 624 ± 84 (252) keV. The contribution of 16 O (0^+_6) $\rightarrow \alpha$ + HS decays is estimated to be equal to 7 ± 2% to normalize on HS. It can be concluded that the direct dissociation of α + HS dominates in the formation of HS.

²²Ne 3.22 *A* GeV

Relativistic dissociation of ²⁸Si nuclei

Searching for Nα states in ⁸⁴Kr dissociation

Searching for Nα states in ⁸⁴Kr dissociation

1316 interactions of 10.7 *A* GeV Au; 160 α -pairs $Q_{2\alpha} < 0.2$ MeV; 40 events with $2\alpha p$ -triplets $Q_{2\alpha p} < 0.5$ MeV (⁹B); 12 events with α -triplets $Q_{3\alpha} < 0.7$ MeV (Hoyle state); 1 event with α -quartet $Q_{4\alpha} = 1$ MeV.

Summary

- Existing experimental data on interactions of the relativistic nuclei have allowed us to determine the contribution of unstable nuclei ⁸Be and the Hoyle state to the dissociation of the relativistic nuclei.
- The presented results of our analysis have indicated a relative enhancement of the ⁸Be contribution to the increasing number of relativistic α-particles per event.
- The main goal of our future experiments is to explain the connection between the appearance of ⁸Be and HS and the multiplicity of α -ensembles and search for the decays of the ¹⁶O(0+₆) state.

