# Methods for centrality determination in heavy-ion collisions with the MPD experiment

Ilya Segal<sup>1</sup>, Arkadiy Taranenko<sup>1</sup>, Peter Parfenov<sup>1</sup>, Dim Idrisov<sup>1</sup> for the MPD Collaboration



<sup>1</sup>NRNU MEPhI



July 15<sup>th</sup>, 2022 NUCLEUS-2022 Conference



### Motivation

- Final state of the system produced in the heavy-ion collisions depends on its initial geometry
- Goal of centrality determination: map (on average) the collision geometry parameters to experimental observables (centrality estimators)
- Glauber model is commonly used to build such connection
- Centrality class: group of events corresponding to a given fraction (%) of the total cross section:

$$C_b = rac{1}{\sigma^{AA}_{inel}} \int_0^b rac{d\sigma}{db'} db'$$



### Why we need several centrality estimators



- MC-Glauber x NBD multiplicity fitting procedure is standard method for centrality determination
- MPD needs this method to compare data in the least experiment dependent way

# Why we need several centrality estimators

Anticorrelation between total charge of the spectator fragments (FW) and particle multiplicity



A number of produced protons is stronger correlated with the number of produced particles (track & RPC+TOF hits) than with the total charge of spectator fragments (FW)

HADES; Phys.Rev.C 102 (2020) 2, 024914



Avoid self-correlation biases when using spectators fragments for centrality estimation

### Centrality estimators in MPD



#### \* these plots are illustrative only

# MPD subsystems for centrality determination

Simulation setup

• DCM-QGSM-SMM

M.Baznat et al. PPNL 17 (2020) 3, 303

- Bi-Bi @ √s<sub>NN</sub> = 9.2 GeV
- Transport: GEANT4

Subsystems

- Multiplicity: TPC
- Spectators energy: FHCal



#### MC-Glauber + NBD fitting procedure



\* For detailed description see talk about centrality in BM@N on Thursday (July 14<sup>th</sup>)

# MC-Glauber fit result for Bi-Bi @ 9.2 GeV



- Fit result is good
- Impact parameter distributions in different centrality classes reproduces ones from DCM-QGSM-SMM

#### MC-Glauber+Spectators fitting procedure



#### MC-Glauber+Spectators fitting procedure



# NA61/SHINE experimental setup



**PSD** detector layout

# Full mode procedure (example for NA61)



- Scaling along both X and Y axis is applied
- Form of energy distribution is reproducible

#### MC-Glauber+Spectators fitting procedure



# Light mode procedure fit (example for NA61)



 $\chi^2$ /NDF=18.1891±0.365028;  $\mu$ =12.4943, k=8.9; MinFitBin=17 (200 GeV), MaxFitBin=250 (3000 GeV)

- Produced particles affect form of full PSD distribution
- Light mode maybe needs some additional parameters

#### Summary

- MC Glauber and multiplicity based fitting procedure is implemented for MPD
- Relation between impact parameter and centrality classes is extracted
- Software implementation of the procedure is ready and is supported by our group
- Centrality determination procedure based on spectators energy and MC Glauber model is proposed
- Results are tuned on the spectator production implemented in the DCM-QGSM-SMM model

#### Work in progress

- Investigate the effect on centrality determination due to the fragment loss in beam hole of the MPD FHCal
- Introduce parametrization for steps of centrality determination procedure based on spectators energy
- Apply this procedure for MPD FHCal simulations

This work is supported by: the RFBR grant No. 18-02-40086, the Russian Academic Excellence Project (contract No. 02.a03.21.0005, 27.08.2013)

# Backup

### MC-Glauber model

MC-Glauber model provides a description of the initial state of a heavy-ion collision

- Independent straight line trajectories of the nucleons Ο
- A-A collision is treated as a sequence of independent binary NN collisions Ο
- Monte-Carlo sampling of nucleons position for individual collisions Ο

#### Main model parameters



#### SMM description of the ALADIN's fragmentation data

#### A.S. Botvina et al. NPA 584 (1995) 737



#### R.Ogul et al. PRC 83, 024608 (2011)



#### Mass number of fragments sampling for given event: new procedure



#### Population of fragments with energy and rapidity



- Energy and rapidity distributions have different shapes for different fragment mass
- Shapes are used as input for sampling energy & rapidity values for each fragment

### NBD at different values of k



MC Glauber fit results are in good agreement with simulated input

# MC-Glauber fit result for AgAg @ 9.2 GeV



# Centrality determination using STS multiplicity



Distribution provides connection between

centrality class (multiplicity range, M  $\pm \Delta$ M) and impact parameter range (b  $\pm \sigma_{\rm b}$ )