Performance of the precise electromagnetic calorimeter ALICE/PHOS and upgrade plans

> Dmitri Peresunko for the ALICE collaboration NRC "Kurchatov institute"

PHOS

Active element	Homogeneous crystals PbWO ₄
Molière radius	2.0 cm
Photodetector	Avalanche Photodiode 5×5 mm ²
Depth	20 X ₀
Acceptance	Run 1: $ \eta < 0.12$, 260 < ϕ < 320° Run 2: $ \eta < 0.12$, 250 < ϕ < 320°
Granularity	Cell 2×2 cm ² $\Delta \phi \cdot \Delta \eta = 0.0048 \cdot 0.0048$ rad
Modularity	3+1/2 modules 12544 cells
Dynamic range	0.01-100 GeV
Distance from IP	460 cm, 0.2 X ₀

PHOS trigger

- ALICE calorimeters provide triggers at levels L0 (1.2 μs) and L1 (7 μs)
- PHOS L0: trigger on energy sum of 4×4 cells within area covered by trigger region units (TRUs) above a threshold
- PHOS L1: trigger on photons with 3 thresholds
 - Thresholds are adjustable depending on collision rate, trigger rejection factor, readout time. Typical threshold: 4 GeV
 - □ pp collisions: low trigger rate → only PHOS
 L0 trigger is required
 - p-Pb, Pb-Pb collisions: L1 triggers become effective

PHOS calibration

- Energy calibration
 - Pre-calibrated using APD gains
 - Final calibration using π^o peak, procedure optimized using MC simulations
 - Cross-check using η peak and electron
 E/p peak
 - Time-dependent correction based on π^o peak position
- Time calibration

0.06

t-t (s)

05

ALI-PERF-311846

1

1.5

2 25

D.Peresunko, Nucleus-2022, Moscow

380

Run index

10

4.5

E (GeV)

35

Particle identification in PHOS

- Shower shape
 - ¹ Use eigenvalues of 2D dispersion matrix
- Neutrality (track matching)
 - Parameterize distance from clusters to track extrapolation and normalize in units of standard deviations

PHOS time resolution

Current electronics was not designed to have good time resolution. Present resolution is modest and can not be used for particle identification, only for pileup rejection.

Beam-test results with specialized electronics. SiPM with dedicated electronics provides resolution up to 200 ps.

PHOS dynamic range

- PHOS electronics has 2 channels with 10 bit ADC each, with gain ratio ~16
- Gain adjusted so that 1 ADC channel ~ 5 MeV

1.008

1.006

1.004

1.002

ALI-PERF-525133

- To test possibility to measure low-energy photons a dedicated reconstruction was performed with reduced threshold on the energy of cells contributing to cluster
 - PWO light yield sufficient to measure photons with E~40 MeV

0.02

0.04

MC simulations show that resolution is still defined by the electronics noise Real/Mixed

- PHOS reconstructs neutral mesons π_0 , η , ω in a wide p_{τ} range
- In all colliding systems
 - pp, pA, AA

D.Peresunko, Nucleus-2022, Moscow

Raw real event

Mixed event BG Remain. BG

0.2 0.25 *M*_m (GeV/*c*²)

Neutral meson spectra

- Neutral meson measurements in a wide p_T range provide inputs for global PDF and FF fits
- Study strangeness production in η/π^0 ratio
- Study particle production mechanisms: multiplicity dependence, in-jet production, event shape dependence etc.

10¹⁶

GeV⁻²

qd)

210

10¹¹

10¹⁰

D.Peresunko, Nucleus-2022, Moscow

ALICE Preliminary

8 TeV (x10⁴)

7 TeV (x10³)

0.9 TeV

2.76 TeV (x10) 🚺

13 TeV (Prel.) (x10⁵)

5.02 TeV (Prel.) (x10²)

 $pp \rightarrow \pi^0 X$

Parton energy loss in AA collisions

- Study of parton energy loss in a wide p_τ range via identified hadrons
- Separately for π⁰ and η mesons, look at strangeness and mass dependence

(C/GeV)

D.Peresunko, Nucleus-2022, Moscow

Pb-Pb, $\sqrt{s_{1}} = 5.02 \text{ TeV}$ ALICE preliminary

 $\pi^0 \rightarrow \gamma \gamma$

Direct photon spectra and flow

- Direct photon spectrum at hight p_T >5 GeV/c agrees with pQCD predictions scaled with the number of nucleon-nucleon collisions
- In central collisions there is clear excess at low p_{T} due to thermal emission

04

0.3

0.2

0.1

ALI-PUB-15840

- Direct photon flow similar to flow of decay photons and stronger than predictions of hydrodynamic models (direct photon flow puzzle)
- However, uncertainties too large to make final conclusion

Reasons for PHOS upgrade

- Improve time resolution
 - Extend photon physics program to low p_T
 - Direct photon flow
 - Direct photon Bose-Einstein correlations
 - Test of Low theorem
 - Antineutron measurements
- Electronics upgrade
 - Spare parts of current FECs become obsolete and no longer produced
 - Possibility to reduce noise
 - New picoTDC chip is state-of-the art technology which will provide best possible timing capabilities of new cards
 - New readout units: designed for upgraded ITS. Will have bandwidth up to 200 MHz
- Mechanics upgrade
 - Provide access to FEE in course of data taking

Upgrade: improvement of photon purity with time cut

- Shower shape cut not efficient for clusters with few cells
- Neutrality cut inefficient for low-p_τ tracks (highly bent, non-perpendicular incidence to PHOS)
- TOF is the only effective cut at low p_{T}
 - with time resolution provided with new electronics TOF cut $-3\sigma_t < \tau < 2\sigma_t$ allows to reduce contamination down to ~10% at 100 MeV/c.

Upgrade: expected reduction of systematic uncertainties

- Expected improvements in Run 4 discussed in
 - ^D arXiv:1812.06772 ; CERN-LPCC-2018-07
- Uncertainties in direct photon spectrum can be reduced by a factor of ~2 and spectrum can be extended to lower p_{T}
- Uncertainties in direct photon flow can be reduced by factor ~2
 - confirm/solve direct photon flow puzzle
 - observe negative v₂ due to quark Landau levels (X.Wang et al., Phys.Rev.D 102 (2020) 7, 076010)

Phvs.Lett.B 754 (2016) 235

Centrality	0-20%		20-40%		40-80%	
$p_{\rm T}~({\rm GeV}/c)$	2	10	2	10	2	10
Yincl yield						
Efficiency (B)	3.0	3.0	0.7	0.7	2.5	2.5
Contamination (B)	2.0	2.0	1.3	1.3	2.9	0.5
Conversion (C)	1.7	1.7	1.7	1.7	1.7	1.7
Acceptance (C)	1.0	1.0	1.0	1.0	1.0	1.0
*Global E scale (B)	9.6	9.0	6.1	5.9	5.8	6.3
*Non-linearity (B)	2.2	0.1	2.1	0.1	2.0	0.1
π^0 yield						
Yield extraction (A)	2.7	4.0	3.1	5.2	1.8	2.9
Efficiency (B)	1.8	1.8	2.7	2.2	2.5	2.5
Acceptance (C)	1.0	1.0	1.0	1.0	1.0	1.0
Pileup (C)	1.0	1.0	1.0	1.0	1.0	1.0
Feed-down (B)	2.0	2.0	2.0	2.0	2.0	2.0
M_{ecay}/π^0						
π^0 spectrum (B)	1.3	4.3	1.8	1.8	1.8	1.8
η contribution (B)	2.2	1.7	2.2	1.6	2.1	1.6
Total R_{γ}	6.8	7.9	5.9	6.5	6.1	6.0
Total yincl	12.4	12.7	9.7	10.0	9.8	9.6

Conclusions

- PHOS demonstrated excellent performance in Run 1 and Run 2 and contributed to all neutral meson and direct photon measurements of ALICE
 - superb energy resolution
 - good particle identification
- PHOS upgrade will allow to
 - extend physics program to lower energies
 - improve particle identification at lower energy

This work was supported by the Russian Science Foundation grant 22-42-04405