LXXI International conference "NUCLEUS – 2022. Nuclear physics and elementary particle physics. Nuclear physics technologies"

Analysis of Alpha and cluster radioactivity using Qvalue dependent relative separation

Research Scholar Nitin Sharma Under supervision: Dr *Manoj K. Sharma*

School of Physics & Materials Science Thapar institute of engineering & Technology, Patiala (India)

Presented by: Chahat Jindal Research Scholar

- Radioactivity
- Spontaneous fission
- Motivation
- Methodology
- Preformed Cluster Model (PCM)
- Study of alpha decay
- Study of cluster decay
- Summary

Radioactivity

process in which unstable atomic nucleus loses energy and become stable by emitting radiation in the form of particles, clusters or electromagnetic waves.

Radioactive decay is the

Energy

Radiation

Spontaneous Decay

Half life

Time required for the amount of the radionuclides to reduce to half = (physical) half-life

Motivation

Q-Value Effects Preformation Probability

Authors of **Eur. Phys. J. A** (2018) 54: 156 introduced a relation between $logP_0$ with q-value where P_0 is preformation probability.

For Cluster Decay it is as :

$$\log_{10} P_0 = -2.2687Q^{1/2} + 8.2558$$

Comparison of this empirical relation with other models is represented

Q-Value Effects logT_{1/2}

5-10% change in the Q-value of the decay channel may change decay half-lives by an order of 2-3.

It is concluded that, $\log T_{1/2}$ strongly influenced by the Q-Value of the decay channel.

PHYSICAL REVIEW C **51**, 2 (1995)

Quantum Mechanical Fragmentation Theory

Theory of Fission-Mass Distribution

• Using the concept of mass asymmetry $\xi = (A_1 - A_2)/(A_1 + A_2)$, treated as dynamical collective coordinate, based on ATCSM they calculated the mass distribution of fissioning nuclei ²²⁶Ra, ²³⁶U & ²⁵⁸Fm.

The idea was further extended for understanding the charge dispersion in nuclear fission by R K Gupta, W. Scheid and W. Greiner. in PRL Vol. 35, no. 6, (1975).

Explanation of the parameters of the asymmetric two-center shell models for the protons and neutrons.

Nuclear Shapes

Reflection axis \rightarrow

Deformation Effects

$$R_i(\alpha_i) = R_{0i} \left[1 + \sum_{\lambda} \beta_{\lambda i} Y_{\lambda}^{(0)}(\alpha_i) \right]$$

The deformation and orientation effects the barrier height.

PHYSICAL REVIEW C 86, 044612 (2012)

The collective potential V(η , R) can be calculated as

 $V(\eta,\eta_Z,R) = -\sum_{i=1}^{2} B_i(A_i,Z_i,\beta_{\lambda i}) + V_C(R,Z_i,\beta_{\lambda i},\theta_i,\phi) + V_N(R,A_i,\beta_{\lambda i},\theta_i,\phi) + V_\ell(R,A_i,\beta_{\lambda i},\theta_i,\phi)$

The binding energy contains both the macroscopic (liquid drop model) and microscopic (shell-correction) part.

$$\sum_{i=1}^{2} V_{LDM} + \sum_{i=1}^{2} \delta U \exp\left(-\frac{T^{2}}{T_{0}^{2}}\right)$$

The collective potential V(η , R) can be calculated as

 $V(\eta,\eta_Z,R) = -\sum_{i=1}^{2} B_i(A_i,Z_i,\beta_{\lambda i}) + V_C(R,Z_i,\beta_{\lambda i},\theta_i,\phi) + V_N(R,A_i,\beta_{\lambda i},\theta_i,\phi) + V_\ell(R,A_i,\beta_{\lambda i},\theta_i,\phi)$

$$V_{C}(Z_{i},\beta_{\lambda i},\theta_{i},\alpha_{i},T) = \frac{Z_{1}Z_{2}e^{2}}{R(T)} + 3Z_{1}Z_{2}e^{2}\sum_{\lambda,i=1,2}\frac{1}{2\lambda+1}\frac{R_{i}^{\lambda}(\alpha_{i},T)}{R(T)^{\lambda+1}}Y_{\lambda}^{(0)}(\theta_{i})\left[\beta_{\lambda i} + \frac{4}{7}\beta_{\lambda i}^{2}(\theta_{i})\right]$$

Deformation dependent coulomb potential

The collective potential V(η , R) can be calculated as

 $V(\eta,\eta_Z,R) = -\sum_{i=1}^{2} B_i(A_i,Z_i,\beta_{\lambda i}) + V_C(R,Z_i,\beta_{\lambda i},\theta_i,\phi) + V_N(R,A_i,\beta_{\lambda i},\theta_i,\phi) + V_\ell(R,A_i,\beta_{\lambda i},\theta_i,\phi)$

The collective potential V(η , R) can be calculated as

The collective potential $V(\eta, R)$ can be calculated as $V(\eta, \eta_Z, R) = -\sum_{i=1}^{2} B_i(A_i, Z_i, \beta_{\lambda i}) + V_C(R, Z_i, \beta_{\lambda i}, \theta_i, \phi) + V_N(R, A_i, \beta_{\lambda i}, \theta_i, \phi) + V_\ell(R, A_i, \beta_{\lambda i}, \theta_i, \phi)$

Schrodinger wave equation separated for η -coordinates

$$\left[-\frac{\hbar^2}{2\sqrt{B_{\eta\eta}}}\frac{\partial}{\partial\eta}\frac{1}{\sqrt{B_{\eta\eta}}}\frac{\partial}{\partial\eta}+V(\eta)\right]\psi^{\nu}(\eta)=E^{\nu}_{\eta}\psi^{\nu}(\eta)$$

- For ground state decay, v = 0
- For excited state decay, $v = 1, 2, 3, \ldots$

The preformation probability, P_0 , which imparts the structure information of the decaying nucleus, is obtained by solving the stationary Schrodinger equation in η

The penetrability *P* is calculated under WKB approximation, solved analytically as follows

$$P_0 = \sqrt{\beta_{\eta\mu}} |\psi(\eta(A_i))|^2 (2/A_{CN})$$

$$P = \exp\left[-\frac{2}{\hbar} \int_{R_a}^{R_b} \{2\mu[V(R) - Q_{eff}]\}^{1/2} dR\right]$$

Preformed Cluster Model

The preformed cluster model (PCM) is based on Quantum Mechanical Fragmentation Theory (QMFT).

Preformed Cluster Model

Preformation Probability

The preformation probability, P_0 , which imparts the structure information of the decaying nucleus, is obtained by solving the stationary Schrodinger equation in η

Preformed Cluster Model

Penetration Probability

Three step process:

$$P_{a} = exp[-\frac{2}{\hbar} \int_{R_{a}}^{R_{i}} \{2\mu[V(R) - V(R_{i})]\}^{1/2} dR],$$

$$P_{a} = exp[-\frac{2}{\hbar} \int_{R_{b}}^{R_{b}} \{2\mu[V(R) - O]\}^{1/2} dR],$$

$$P_b = exp[-\frac{2}{\hbar} \int_{R_i}^{R_o} \{2\mu[V(R) - Q]\}^{1/2} dR],$$

PHYSICAL REVIEW C 102, 064603 (2020)

Present Work

Present work is mainly focused on alpha decay and cluster radioactivity of the nuclei belongs to actinide region.

Alpha decay of different isotopes of Actinium nuclei i.e. ²⁰⁷Ac, ²⁰⁹Ac, ²¹¹Ac, ²¹³Ac, ²¹⁵Ac, ²¹⁷Ac, ²²¹Ac were studied by taking spherical choice of fragments.

The Q-value of alpha decay channel for Ac nuclei is calculated and plotted w.r.t neutron number of daughter nucleus

Alpha decay of different isotopes of Actinium nuclei i.e. ²⁰⁷Ac, ²⁰⁹Ac, ²¹¹Ac, ²¹³Ac, ²¹⁵Ac, ²¹⁷Ac, ²²¹Ac were studied by taking spherical choice of fragments.

Further variation of First Turning Point (R_a) is analyzed and shell effects are clearly visible at N=126 (neutron closed shell)

Alpha decay of different isotopes of Actinium nuclei i.e. ²⁰⁷Ac, ²⁰⁹Ac, ²¹¹Ac, ²¹³Ac, ²¹⁵Ac, ²¹⁷Ac, ²²¹Ac were studied by taking spherical choice of fragments.

Experimental $LogT_{1/2}$ are compared with calculated values and shows a good agreement.

Standard Deviation

$$\sigma = \left[\sum_{i=1}^{n} \left[\log_{10}(T_i/T_{\text{Expt.}})\right]^2 / (n-1)\right]^{1/2}.$$

Mass Number of nuclei

 $94 \le Z \le 102$

10.1 - (a) **Alpha Decay** 10.0 \mathbf{R}_{n} (fm) 9.9 0 **Standard Deviation** 9.8 9.7 $PCM(\Delta R)$ $\sigma = \left[\sum_{i=1}^{n} \left[\log_{10}(T_i/T_{\text{Expt.}}) \right]^2 / (n-1) \right]^{1/2}.$ PCM(Poly.) O 9.6 225 230 235 245 24025025526026516 $PCM(\Delta R)$ (b) O 14 PCM(Poly.) ≙ 8 ◬ Expt. 12 10 LogT_{1/2} (sec) O 8 $\sigma = 1.76$ and 1.07. Δ 8 ⊿ 8 Я 2 By varying $\Delta R =$ Using given 0 -(0.90-1.20)fm -2 Polynomial 230 225 235245 250255 260265 240

Mass Number of nuclei

Penetration Probability and Q-Value of Alpha decay

 $89 \leq Z \leq 102$

Half life of Alpha Decay

Preformation of alpha decay first decreases and then increases suddenly and further starts decreasing due to shell effects at N=126.

This observation is similar as shown by PHYSICAL REVIEW C 77, 054318 (2008)

Cluster Decay

For Spherical Fragments

For Deformed Fragments

$$\frac{R_a}{R_t} = 1.05502 - 0.000117016 * Q + 0.0000003424 * Q^2$$

$$\frac{R_a}{R_t} = 1.05706 - 0.0001977 * Q + 0.0000007926 * Q^2$$

 $\sigma = 4.20$

 $\sigma = 2.73$

Deformed choice of fragments shows a good approximation

Summary

- Nuclei ranging $89 \le Z \le 102$ are studied for Alpha and cluster decay.
- Alpha decay of different Ac nuclei were studied. Analysis of q-Value and First turning point R_a with neutron number of daughter nuclei is done.
- A relationship between Q-Value of these decays with first turning point (R_a) is introduced.
- To check the validity of the polynomial standard deviation is calculated and it shows a good approximation.
- Further Cluster Radioactivity is studied for the same range and polynomial is introduced for the same.
- Preformation probability, penetration probability and $\log T_{1/2}$ of alpha decay for the given range is studied and it shows shell effects plays a very important role.

