Supported in part by

Energy dependence of triangular flow for identified hadrons in Au+Au collisions at $\sqrt{s_{NN}} = 14.5 - 62.4$ GeV from the STAR experiment

Alexey Povarov for the STAR Collaboration

National Research Nuclear University MEPhI

LXXII International Conference "Nucleus-2022: Fundamental problems and applications"

Moscow (Russia), July 11-16, 2022

Outline

- Introduction
- Anisotropic flow at RHIC
- The STAR detector at RHIC
- Analysis methods
- Results
- Summary and Outlook

Anisotropic collective flow at RHIC

- $v_{n}(\mathbf{p}_{T}, \mathbf{centrality})$ sensitive to the early stages of collision.
- Important constraint on transport properties: EOS, η/s , ζ/s , etc.
- Mass ordering at p_T < 2 GeV/c (hydrodynamic flow, hadron rescattering)
- Baryon/meson grouping at p_T > 2 GeV/c (recombination/coalescence)
- v₂ difference of particles and antiparticles is larger for baryons than mesons

The main goal is to study

 $v_3(\sqrt{s_{_{\rm NN}}}, \text{centrality}, \text{PID}, p_T)$ because it is sensitive to initial state fluctuations and viscosity 3

The STAR detector at RHIC

Time Projection Chamber (TPC):

- Tracking of charged particles with $|\eta| < 1$, 2π in φ .
- PID using dE/dx measurements **Time-Of-Flight (TOF):**
 - |η| < 0.9, 2π in φ
- PID using time-of-flight information Event planes: TPC ($|\eta| < 1$) Data set: Au+Au at $\sqrt{s_{_{NN}}} = 11.5 - 62.4 \text{ GeV}$

27 GeV from RHIC beam energy scan phase two (BES-II) and other energies from BES-I

Analysis technique: Event Plane Method (EP)

$v_2(p_T)$ and $v_3(p_T)$ of charged hadrons as a function of p_T

$$arphi_n^{ ext{int}} = \int arphi_n(extbf{p}_{ ext{T}}) ext{dp}_{ ext{T}}$$
 $0.2 < ext{p}_{ ext{T}} < 3.2 ext{ GeV/c}$

- Elliptic flow has stronger dependence on centrality than triangular flow
 - Similar shape of p_T dependence of normalized v_2 and v_3 for all centralities and beam energies

Note: 27 GeV from RHIC beam energy scan phase two (BES-II) and other energies from BES-I

Beam-energy dependence of v_2 and v_3

NCQ scaling of v_2 and v_3

 $⁽m_{\tau}-m_{0})/n_{a} [GeV/c^{2}]$ Alexey Povarov NUCLEUS-2022 $(m_{\tau}-m_{0})/n_{a} [GeV/c^{2}]$

Antiparticles

 $2.5 \times v_3/n_a^{3/2}$

STAR Preliminary

territer to a fear the state of the state of

(e)

- NCQ scaling tests were performed for \boldsymbol{v}_{2} and \boldsymbol{v}_{3} of particles and antiparticles
- Scaling holds better for higher energies
- Scaling holds better for particles than antiparticles
- Quantification of the baryon and meson splitting and the scaling with the number of constituent quarks (NCQ) is ongoing

$v_2(p_T)$ and $v_3(p_T)$ for positively charged particle species

• Similar shape for p_T dependence of normalized v_2 and v_3 for positively charged particle species Alexey Povarov NUCLEUS-2022

Note: 27 GeV from RHIC beam energy scan phase two (BES-II) and other energies from BES-I

$v_2(p_T)$ and $v_3(p_T)$ for negatively charged particle species

• Similar shape for p_T dependence of normalized v_2 and v_3 for negatively charged particle species Alexey Povarov NUCLEUS-2022

Note: 27 GeV from RHIC beam energy scan phase two (BES-II) and other energies from BES-I

Beam-energy dependence of v_2 and v_3 particle-antiparticle difference

New v₂ results

STAR Collaboration, Phys. Rev. C 88 (2013) 14902

Differences for v_2 and v_3 between particles and antiparticles increase with decreasing beam energy. Absolute value of particle-antiparticle difference is larger for proton and antiproton than for π^{\pm} , K[±]. **Note:** 27 GeV from RHIC beam energy scan phase two (BES-II) and other energies from BES-I Alexey Povarov NUCLEUS-2022

Summary

Results of v_2 and v_3 in Au+Au collisions at BES energies $\sqrt{s_{NN}} = 11.5 - 62.4$ GeV are presented.

($\sqrt{s_{NN}}$,centrality,PID,p_T)-dependence of v_2 and v_3 :

- Normalized v_2 and v_3 have similar p_T shape for all centralities and beam energies for each particle species
- Mass ordering for $p_T < 1.5$ GeV/c and baryon/meson grouping for $p_T > 2$ GeV/c
- NCQ scaling holds better for particles than antiparticles and for or higher energies
- The difference of particles and antiparticles increases with decreasing collision energy
- Absolute value of $v_n(X) v_n(\bar{X})$ is larger for (p, \bar{p}) than for π^{\pm}, K^{\pm}

Backup slides

Anisotropic collective flow

Initial eccentricity (and its attendant fluctuations), ε_n , drives momentum anisotropy, v_n , with specific viscous modulation

Events selection

Au+Au	Vz , cm	Vr , cm	∆∨у, см	Before cuts	After cuts
Run10 11.5 GeV	< 50	< 2	0.0	12M	10M
Run14 14.5 GeV	< 70	< 1	-0.89	28M	24M
Run11 19.6 GeV	< 70	< 2	0.0	25M	21M
Run10 27 GeV	< 70	< 2	0.0	74M	62M
Run18 27GeV	< 70	< 2	0.0	550M	460M
Run10 39 GeV	< 40	< 2	0.0	126M	105M
Run10 62.4 GeV	< 40	< 2	0.0	56M	47M

Tracks selection and particle identification

Tracks selection:

- Primary tracks
- |η| < 1.0
- DCA < 2 cm (h[±])
- DCA < 1 cm (π[±], K[±], p, pbar)
- NHits > 15
- NHits/NHitsPoss > 0.52

Particle identification:

- dE/dx (TPC):
 - $\circ~|n\sigma|$ < 1.5 for 27 and 62.4 GeV
 - \circ $|n\sigma| < 3.0$ for other energies
- TOF identification:
 - \circ -0.15 < m_{π^2} < 0.1 GeV/c²
 - \circ 0.2 < m_K² < 0.32 GeV/c²
 - \circ 0.74 < m_p² < 1.2 GeV/c²

Systematic uncertainties for v_2 : different $\Delta \eta$ -gap

Systematic uncertainties for v_3 : different $\Delta \eta$ -gap

Differences are within 1-5% for all beam energies