$\sigma(\mathsf{p}+\mathsf{air})$ with POEMMA

M.H. Reno (U. Iowa), R. Ulrich (KIT), M. Unger (KIT)

Reminder: $\sigma(p + air)$ from X_{max}

simulated proton-induced air showers

Reminder: $\sigma(p + air)$ from X_{max}

measured X_{max} distribution 10¹⁸ eV < E <10^{18.5} eV (Auger 2012)

$$\sigma_{p-\operatorname{air}} = rac{\langle m_{\operatorname{air}}}{k\Lambda_\eta}$$

Fly's Eye Collaboration, PRL **52** (1984) 1380 HiRes Collaboration, Nucl.Phys.Proc.Suppl. **151** (2006) 197 Pierre Auger Collaboration, PRL **109** (2012) 062002 Telescope Array Collaboration, PRD **92** (2015) 32007 Telescope Array Collaboration, arXiv:2006.05012

Are there UHE protons?

M. Muzio et al, Phys.Rev.D 100 (2019) 103008

UHE Composition Scenarios

- CMB acts as natural He filter (major background for σ_{p-air})
- UHE proton fractions \leq 25% not excluded (E > 40 EeV)

POEMMA UHECR Group, Phys.Rev.D 101 (2020) 2, 023012, fractions from M. Muzio et al, Phys.Rev.D 100 (2019) 103008

POEMMA Sensitivity

- N = 1400 events E > 40 EeV (Auger energy scale)
- relative statistical uncertainty of Λ_{η} :

 $\sigma_{\Lambda}/\Lambda = (\eta N)^{-\frac{1}{2}}$

 \rightarrow relative statistical uncertainty of $\sigma_{p-{\rm air}}$

- two choices of η depending on UHE composition:
 - if p:N = 1:9 $\rightarrow \eta =$ 0.02
 - if p:Si = 1:3 $\rightarrow \eta = 0.13$

POEMMA Sensitivity

