Регистрация гамма-квантов от Крабовидной туманности в области энергий более 4 ТэВ атмосферным черенковским телескопом с регистрацией имиджа в эксперименте TAIGA

TAIGA- Tunka Advanced Instrument for cosmic ray physics and Gamma-ray Astronomy

ЗАДАЧИ

Поиск предела ускорения частиц в известных остатках сверхновых и пульсарных туманностях в области высоких энергий > 3-4 ТэВ только с помощью IACT и более 40-50 ТэВ гибридной установкой IACT + HiSCORE. В частности Крабовидная туманность и Boomerang (пульсарные туманности), Тихо Браге и Кассиопея A (остатки сверхновых), Dragonfly Nebula (Cygnus region) ARGO J2031+4157 (Cygnus Cocoon) (Superbubble).

Л.А.Кузьмичёв утро 29.09 доклад

Схема расположения оптических станций широкоугольной черенковской установки TAIGA-HiSCORE и трех АЧТ установки TAIGA-IACT астрофизического комплекса TAIGA.

Телескоп TAIGA-IACT1

IACT1 (Телескоп TAIGA-IACT): зеркало системы Дэвиса– Коттона площадью 8.5 м² из 29 сегментов, фокусное Р расстоянием — 4.75 м. В фокусе - камера из 548 ФЭУ диаметр 19 мм каждый (0.360); Диаметр камеры около 110 см (9.60).

Формирование имиджа в камере от черенковского света ШАЛ

Параметры Хилласа – Dist (положение), length (длина), Width (ширина), alfa (угол между основной осью эллипса) и направлением на центр и т.д.

параметры имиджа Хилласа

Ч. свет от ШАЛ отражается от зеркала Телескопа и регистрируется камерой Телескопа, расположенной в ФП.

Параметры имиджа отличаются для гамма и протон-инициированных ливней

Время наблюдения Краба 2019-2020

data	N	dThours Rat	e TmBMes	st TmEMe	<tet></tet>	Полное время наблюле	ния	
04.10.19	25582	0.74 9.55	27.28	28.02	39.25		Γ.)	
04.11.19	101050	4.59 6.12	25.24	29.83	33.13	при хорошеи погоде (4-	·5)	
05.11.19	61486	3.72 4.59	26.22	29.94	34.34	100 ~часов (из них ~	Э4 часа с	
06.11.19	105679	4.07 7.21	25.97	30.04	33.64			
23.11.19	205702	4.96 11.52	24.00	28.96	33.66	реитом >4 п2		
24.11.19	112414	4.99 6.26	23.93	28.93	34.65			
26.11.19	202363	4.95 11.35	23.80	28.76	33.68	~ 12-18 upca Ovta605-	logfnr -	
27.11.19	199324	4.88 11.34	23.74	28.62	33.57	42-40 4aca OKINOPB-1	юлорв –	
29.11.19	180535	4.91 10.21	23.61	28.52	33.45	основные данные		
31.10.19	118963	4.33 7.63	25.51	29.84	33.04			
02.12.19	106406	3.01 9.82	25.28	28.29	32.46			
05.12.19	58141	1.58 10.24	26.50	28.08	34.73	~ 38 часов – Декабрь-Я	нварь:	
06.12.19	35750	0.93 10.62	27.06	27.99	36.46	недопонятые данны	е, которые	د
21.12.19	176994	4.92 9.99	22.16	27.09	33.56			
24.12.19	86071	4.89 4.89	21.97	26.86	34.11	оосуждаются		
29.12.19	145504	4.08 9.90	22.47	26.55	32.63	~ 13 часов февральские	данные	
02.01.20	29995	0.90 9.30	25.52	26.42	37.95		•	
03.01.20	16881	0.52 9.05	25.65	26.17	38.04	получены с жесткий	1	
15.01.20	54410	1.73 8.76	21.45	23.18	31.34			
16.01.20	122614	3.98 8.55	20.46	24.44	32.93			
19.01.20	132738	4.46 8.26	20.69	25.15	32.84	data N dTho	ours Rate Tm	۱BN
23.01.20	99983	3.06 9.09	21.68	24.73	32.07	13.02.20 48100 1.82	2 7.33 21	. 5
26.01.20	161778	4.83 9.30	19.85	24.68	33.59	14.02.20 27308 1.11	6.82 22	.4
27.01.20	124128	4.51 7.64	20.35	24.86	33.52	15.02.20 78547 2.90	7.53 20	.4
28.01.20	99387	3.00 9.20	21.49	24.49	32.35	16.02.20 74244 2.70	7.64 20	
						21.02.20 57962 2.3	6.85 20	

20

43849

5.71

Обработка данных ІАСТ

- 1 шаг: Суммирование информации, записанной в каждом кластере. Вычитание пьедесталов, перевод данных из токов в фотоэлектроны, введение поправок на чувсвительность ФЭУ; получение первого варианта имиджа (Amplitude(X, Y))
- 2 шаг: Считывание информации из файлов слежения телескопа и определение позиции источника в камере (On) и точки позиции фона (off)
- 3 шаг: Удаление данных из плохо-работающих пикселей и пикселей со звездой

4. шаг: клининг: выделение имиджа над фоном: при двух порогах N1~6sig и N2~3sig фон 5. шаг: Расчет параметров Хилласа и других параметров имиджа

6. Шаг: Подавление фона и выявление гамма-подобных ливней по параметрам имиджей

Процедура деления событий On (события от источника) и Off (события от фона) при изменении времени наблюдения см. постер Д.Журова

Source Ra=83.633 Dec=22.014,

В 2019-2020 гг телескоп следит за Крабом в Режиме (Wobbling): Центральная ось телескопа направлена на точку, сдвинутую относительно направления на краб (RaCrab+1.20 в течении 20 мин затем RaCrab-1.2 о еще 20 мин.)

Позиция фона берется как анти-источник те через 20 -минутный сдвиг. Для каждого имиджа мы можем посчитать параметры On и Off. Тем самым преодолевая проблему необходимости деления времени наблюдения между измерением фона и измерениями источника.

Исключение треков звезды и плохих пикселей

1) Основная яркая звезда рядом с Крабом Dzeta Tau,

Оба метода дают близкие результаты usually 4-6 pixels

Основные параметры имиджей после обработки

Nsob – Номер события

Time - время события Size - Сайз- полное число фе

N_im2 – число пикселей

Ro- расстояние до центра камеры

width - ширина

length – длина

con1 con2 – концентрация (basic image parameters that do not

Положение источника в камере

Положение точки фона в камере

On

Xc, Yc, dist – координаты взвещенного центра относительно пикселя источника Alfa – угол между основной осью эллипса и направлением на источник

oFF

Xc, Yc, dist – координаты взвещенного центра относительно пикселя источника Alfa – угол между основной осью эллипса и направлением на источник

Монте-Карло симуляции Corsika IACT + метод регистрации (А.Гринюк ОИЯИ)

- 1) Настройка М_К по экспериментальным данным: учет кластерной структуры данных, симуляция триггерной системы, симуляция воздушного фона. Добиваемся согласования спектров фоновых имиджей по сайзам, рейтам, равномерности по ХҮ камеры
- 2) Настройка по экспериментальным данным (КЛ) параметров имиджей
- 3) Оптимизация катов по параметрам имиджей для выделения гамма-квантов над фоном адронов

Спектры сайзов и зависимость Size-Npx в сравнении с M-K

Спектры сайзов – линии – эксперимент красные точки – М-К для Tr=2px Синии точки – М-К Tr=3Px

Size- Npx : красные точки -Эксперимент синии – М-К - Протон черные - М-К - Гелий

Width-Size зависимость

Черные линии – каты, которые мы используем для подавления фона

Width, length

Эксперимент – MC Pr ----- black , MC gam -----

M-К:наиболее чувствительные параметры: dist и alpha

Size>120 p.e., 12	5 p.e., 140 p.e. dist=0.36-1.53°, от координаты источника
R0<2.1°,	от центра камеры – эффективный FOV< 4.5 ⁰
Length<0.31 [°] ,	Con2>0.44-0.54, width< 0.076 [°] *LgSize-0.047 [°]

Результаты: Октябрь-Ноябрь ~48 hr

Oct-Nov: Non<10=500 Noff<10 = 337 Exc= 162 (5.62 Sig) time of observation : 48hr

М-К калибровочные кривые энергия-SIZE(Rc)

Спектры по восстановленной энергии E(size,Rc) для гамма и адронов в Монте-Карло

Точность восстановления энергии –около 40-60 %, но спектр восстанавливается достаточно хорошо, пороговая энергия около 4 ТэВ

Интегральные спектры по сайзам и по восстановленной энергии в сравнении с М-К

Решение прямой задачи: М-К ливни (с показателем gam=-2.6) 'пропускаются' через наш телескоп и с нашими триггерами и критериями отбора, и нормируются на первичный спектр в соответствии с аппроксимациями, полученными в экспериментах VERITAS (голубая линия) и HEGRA (красная линия). Экспериментально полученные спектры по сайзам и по энергии (Non(alfa<10deg)-Noff(Alfa)<10deg) для полученного избытка сравниваются с VERITAS и HERGra

Измерения Краба на других установках

TAIGA						
Область исследования 1 ІАСТ	: 4-30 ТэВ					
Стереосистема 2-3 ІАСТ	: 10-100 ТэВ					
IACT+ HiSCORE станции	: >40 ТэВ					

Регистрация источника гамма-квантов Маркарян 421 телескопом установки TAIGA-IACT

Постер: ID-85_П.Волчугов от коллаборации TAIGA

Из полученных распределений параметров Хилласа были определены следующие каты $con_2 \ge 0.44, distance_0 \le 2.5^\circ, size \ge 172 pe$

 $length \le 0.31^{\circ}, 0.5^{\circ} \le distance_{1,2} \le 1.25^{\circ}$

Интегральный спектр по Size

Синие точки —эксперимент, зеленая кривая —спектр по сайзу смоделированных гамма-квантов, нормированный на 62 часа наблюдения

Эффективность подавления фона

Trigger Size> 0 000 (1 TeV)	2px 44000 gamma	trigger2 px 481000 Pr+He					
Size> 120 pe (3-4 TeV) Rc=3-12cm Width Wp2 Length 1.3logS	21000	207000					
Con2>0.54 Sqrt=0.019	4842/21000= 0.23	76/207000 = 3.6e-4					
epsGam=0.23	sqrt(eps Phe)=0.019						
Q factor=eps Gam)/sqrt(epsPHe)= 12							

Выводы

1. Отработана методика восстановления имиджей и определения параметров в камере телескопа TAIGA IACT

2. Показана эффективность Wobbling моды слежения телескопом за источником, позволяющей эффективно использовать время слежения.

- 2. Проведено М-К моделирование регистрации гамма-квантов и адронов и согласование с экспериментом
- 3. Найдены оптимальные параметры подавления фона
- 4. Получен избыток гамма квантов от Крабовидной туманности в интервале энергией ~4 ТэВ-30 ТэВ (около 160 частиц) со значимостью ~ 5.6 sigma
- 5. Получен избыток частиц от блазара Mrk 421, ~ 40 частиц в области энергий 3-10 ТэВ со значимостью ~ 5 sigma

Спасибо за внимание!