

Спектры атмосферных нейтрино: статистический анализ сравнения расчета с экспериментом

A. A Kochanov^{1,2}, K. S. Kuzmin^{3,4}, A. D. Morozova^{2,3}, T. Sinegovskaya⁵, S. Sinegovsky^{2,3}

¹ Институт солнечно-земной физики СО РАН

² Иркутский госуниверситет

³ Объединенный институт ядерных исследований

⁴ Институт теоретической и экспериментальной физики,

⁵ Иркутский государственный университет путей сообщения

36-я ВККЛ, НИИЯФ МГУ, Москва 28.09 – 02.10, 2020

Задача

В работе представлены результаты сравнения расчета с данными измерений спектра атмосферных нейтрино с использованием χ²-критерия. Статистический анализ представляет интерес, поскольку позволяет понять, насколько близки предсказания к данным, полученным в эксперименте, различимы ли в измерениях предсказания разных моделей.

Расчет спектров атмосферных нейтрино выполнен для набора высокоэнергетических моделей адрон-ядерных взаимодействий, которые используются также в пакетах моделирования ШАЛ (QGSJET II, SIBYLL 2.1 и др.).

В.А.Наумов, Т.С. Синеговская, ЯФ 63 (2000) 2020;
А.А. Kochanov, T.S. Sinegovskaya, S.I. Sinegovsky,
Astropart. Phys. 30 (2008) 219; ЖЭТФ 143 (2013) 459
T.S. Sinegovskaya et al. Phys. Rev. D 91 (2015) 063011
А. Д. Морозова и др. ЯФ. 2019. Т. 82. С.411

Введение

- ✓ Нейтрино и мюоны высоких энергий генерируются в слабых распадах мезонов и барионов, образующихся в результате взаимодействия космических лучей с атмосферой Земли. Исследование механизма генерации лептонов в атмосферном каскаде представляет интерес как отдельная задача в исследовании процессов рождения частиц в hAвзаимодействиях при высоких энергиях, и особенностей спектра и элементного состава космических лучей высоких энергий.
- Атмосферные нейтрино являются фоном при регистрации астрофизических нейтрино.

✓ В работе выыполнен статистический анализ сравнения расчетных спектров атмосферных нейтрино с данными измерений в экспериментах Frejus, Super-Kamiokande, AMANDA, ANTARES и IceCube. Расчет спектров атмосферных нейтрино был выполнен рамках одной вычислительной схемы для набора моделей адронядерных взаимодействий (QGSJET II-03, SIBYLL 2.1 и др.), используемых также и при моделировании ШАЛ космических лучей, в сочетании с известными параметризациями спектра космических лучей (Зацепина-Сокольской, Хилласа-Гайссера), опирающимися на экспериментальные данные. Для количественного сравнения расчетных энергетических спектров с измеренными спектрами использовался критерий χ^2 : максимально правдоподобной (likelihood) моделью будем считать модель, для которой величина χ² минимальна. Анализ позволил оценить уровень статистической значимости различных моделей в контексте соответствия экспериментальным данным.

$\mathcal{Z}(E,h)$ -метод расчета

- Расчет спектров атм. нейтрино выполнен в рамках Z(E, h)метода, позволяющего рассчитать потоки адронов, мюонов и нейтрино для нестепенного спектра космических лучей, нескейлингового поведения инклюзивных сечений и растущих с энергией неупругих сечений адрон-ядерных соударений.
- Метод был проверен сравнением расчета потоков атмосферных нуклонов, мезонов и мюонов с данными большого числа экспериментов. Расчет не содержит нормировочных коэффициентов и позволяет оценить влияние первичного спектра и адронной модели на абсолютную величину потока нейтрино.

В.А.Наумов, Т.С. Синеговская, ЯФ 63 (2000) 2020; A.A. Kochanov et al. Astropart. Phys. 30 (2008) 219; ЖЭТФ 143 (2013) 459_; T.S. Sinegovskaya et al. Phys. Rev. D 91 (2015) 06301

Спектры космических лучей

Потоки атмосферных нейтрино в данной работе рассчитаны для двух параметризаций спектра и состава космических лучей - Зацепина–Сокольской и Хилласа–Гайссера.

- Спектр Зацепина–Сокольской (ZS) опирается на данные прямых измерений, полученные в эксперименте АТІС-2 [Панов А.Д. и др. Изв. РАН. Сер. физ. 2007. Т. 71. С. 512] в интервале энергий 10–10⁴ ГэВ, и является экстраполяцией этих данных на область энергий до 100 ПэВ;
- В модели Хилласа–Гайссера (H3= HGm): три типа источников и пять групп ядер); используется версия со смешанным составом для внегалактической компоненты (HGm).

Zatsepin V.I., Sokolskaya N. V. Astron. Astrophys. 2006. V. 458. P. 1; Зацепин В.И., Сокольская Н.В. Письма в Астроном. журнал. 2007. Т.33, №1. С.29

T.K. Gaisser, Astropart. Phys.35 (2012) 801

Fig.1 All-particle spectrum as measured by ground-based arrays A.Fedynitch et al. PR D 86, 114024 (2012)

Comparison with MC calculation

A. A. Kochanov, T. S. Sinegovskaya, S. I. Sinegovsky/ Proc. 31st ICRC, ŁODZ 2009;arXiv:0906.0671v2

VS. Bartol group:

G. Barr, T. Gaisser, P. Lipari, S. Robbins, T. Stanev, PR D 70, 023006 (2004).

К тому моменту когда заработал детектор AMANDA расчетный фон AH с какой-то степенью надежности был известен только до 10 ТэВ (М-К). Дальше возрастает неопределенность, а экстраполяция результатов моделирования на область более высоких энергий (на практике 10⁵ используется) неоднозначна по нескольким причинам, в т.ч. из-за неизвестного вклада от распада очарованных частиц.

Спектр атмосферных нейтрино-1

02.10.2020

Спектр атмосферных нейтрино-2

IceCube-59: M. G. Aartsen et al. Eur. Phys. J. C 75 (2015) 116

T.S. Sinegovskaya et al. Phys. Rev. D 91, 063011 (2015)

DM: R. Enberg, M. H. Reno, I. Sarcevic, Phys. Rev. D 78, 043005 (2008)

IceCube не видит "прямых" нейтрино даже для DM benchmark-модели, с по которой построено ограничение на поток of prompt neutrinos.

Спектр атмосферных электронных нейтрино

IceCube ν_e : Phys. Rev. Lett. 110 (2013) 151105;

M. Aarsten et al. (IceCube), Phys. Rev. D 91, 122004 (2015).

Адронные модели: QGSJET II-03 и SIBYLL 2.1; спектры КЛ: Зацепин-Сокольская (ZS) и Хиллас-Гайссер (HGm).

(HGm) T.Gaisser, Astropart. Phys. 24 (2012) 801, arXiv:1303.1431. (HGm = H3a)

(ZS) V.I.Zatsepin, N.V.Sokolskaya, A & A. 458 (2006) 1.

T.S. Sinegovskaya et al. Phys. Rev. D 91 (2015) 063011

*v*_µ / *v*_e - отношение для атмосферных нейтрино

A D Morozova et al. J. Phys. Conf. Ser. 934 (2017) 012008

Impact of semileptonic decay of K_{S}^{0} on the flavor ratio of neutrinos at 50–100 TeV is strong: this contribution in SIBYLL 2.1 leads to lowering of $Rv\mu/ve$ by factor ~ 1.28 at ~ 100 TeV (curve 4 in fig. 3) as compared to that if no K_{S}^{0} decay (long dash curve).

M.G. Aarsten *et al.* 2015 *Phys. Rev.* D 91 122004
M. Honda *et al.* PR D 75, 043006 (2007)
G. D. Barr *et al.*, PR D 70, 023006 (2004)

Fig 8. Atmosperic neutrino flavor ratio averaged and over zenith angles. The calculation for the models KM, SIBYLL 2.1 (2.3), QGSJET II-03, EPOS-LHC.

02.10.2020

Atmospheric and astrophysical $\nu_{\mu} + \bar{\nu}_{\mu}$ fluxes

Atmospheric muon neutrino spectrum ν_{μ} + $\bar{\nu}_{\mu}$ (averaged over zenith angles) compared to measurement data of Ice-Cube [2, 3], ANTARES [4], and Super-Kamiokande [5]. We see spectral hardening of the muon neutrino flux due to additional contribution of astrophysical neutrinos, un-like the muon flux (it's spectral hardening is caused by the prompt muon component). We have a right to expect the prompt neutrinos which should give quantitatively the same effect, however iceCube doesn't find it.

02.10.2020

$dN_{ u\mu+\overline{ u}\mu}/dE$ и значения χ^2/ndf

	H3a, KM (ZS, KM)	H3a, QGSJET-II-03 (ZS, QGSJET-II-03)	H3a, SIBYLL-2.1 (ZS, SIBYLL-2.1)
Abbasi et al., IceCube-40 2011 [4], $97^o < \theta < 180^o$	1.15/12 = 0.10	0.56/12 = 0.05	14.94/12 = 1.24
Aartsen et al., IceCube-59 2015 [3], 90° < $\theta < 120^{o}$	$\begin{array}{c} 10.96/9 = 1.22 \\ (12.66/9 = 1.41) \end{array}$	$\begin{array}{l} 4.60/9 = 0.51 \\ (4.79/9 = 0.53) \end{array}$	35.05/9 = 3.89 (36.15/9 = 4.02)
Aartsen et al., IceCube-59 2015 [3], $120^{\circ} < \theta < 180^{\circ}$	$\begin{array}{c} 0.97/8 = 0.12 \\ (1.22/8 = 0.15) \end{array}$	0.41/8 = 0.05 (0.52/8 = 0.07)	$ \begin{array}{r} 10.63/8 = 1.33 \\ (11.49/8 = 1.44) \end{array} $
Совместный анализ данных IceCube [4,3]	$\begin{array}{c} 13.08/29 = 0.45 \\ (13.88/17 = 0.82) \end{array}$	5.57/29 = 0.19 (5.31/17 = 0.31)	$\begin{array}{c} 60.62/29 = 2.09\\ (47.64/17 = 2.80) \end{array}$

IceCube-59: M. G. Aartsen et al. Eur. Phys. J. C 75 (2015) 116

Значения χ^2 для двух растворов зенитных углов заметно отличаются !

- (1) Угловая зависимость модели заметно отличается от реальной ?
- (2) Ошибки определения зенитного угла нейтрино в эксперименте ?
- (3) Примесь фоновых событий от атмосферных мюонов к нейтринным событиям вблизи горизонтали ?

$dN_{ u\mu+\overline{ u}\mu}/dE$ и значения χ^2/ndf

	H3a, KM (ZS, KM)	H3a, QGSJET-II-03 (ZS, QGSJET-II-03)	H3a, SIBYLL-2.1 (ZS, SIBYLL-2.1)
Abbasi et al., IceCube-40 2011 [4], 97° < θ < 180°	1.15/12 = 0.10	0.56/12 = 0.05	14.94/12 = 1.24
Aartsen et al., IceCube-59 2015 [3], $90^{\circ} < \theta < 120^{\circ}$	10.96/9 = 1.22 (12.66/9 = 1.41)	4.60/9 = 0.51 (4.79/9 = 0.53)	35.05/9 = 3.89 (36.15/9 = 4.02)
Aartsen et al., IceCube-59 2015 [3], $120^{\circ} < \theta < 180^{\circ}$	$\begin{array}{c} 0.97/8 = 0.12\\ (1.22/8 = 0.15) \end{array}$	$\begin{array}{l} 0.41/8 = 0.05 \\ (0.52/8 = 0.07) \end{array}$	$ \begin{array}{c} 10.63/8 = 1.33 \\ (11.49/8 = 1.44) \end{array} $
Совместный анализ данных IceCube [4,3]	$\begin{array}{c} 13.08/29 = 0.45 \\ (13.88/17 = 0.82) \end{array}$	5.57/29 = 0.19 (5.31/17 = 0.31)	$ \begin{array}{c} 60.62/29 = 2.09 \\ (47.64/17 = 2.80) \end{array} $
Совместный анализ данных IceCube [4,3]	$\begin{array}{c c} 13.08/29 = 0.45 \\ (13.88/17 = 0.82) \end{array}$	5.57/29 = 0.19 (5.31/17 = 0.31)	$ \begin{array}{c} 60.62/29 = 2.09 \\ (47.64/17 = 2.80) \end{array} $
Adrian-Martinez et al., ANTARES 2013 [6], $90^o < \theta < 180^o$	1.32/10 = 0.13	3.27/10 = 0.33	2.17/10 = 0.22
Abbasi et al., AMANDA-II 2010 [7], $100^o < \theta < 180^o$	21.43/9 = 2.38	31.38/9 = 3.49	6.52/9 = 0.72

02.10.2020

Super-Kamiokande: другие модели

Phys. Rev. D 94, 052001 (2016)

TABLE V. χ^2 values calculated by testing the measured flux against each flux model prediction according to Eq. (3.12). The number of degrees of freedom (DOF) in each test is also shown.

		χ^2		
Flux model	$ u_e \text{ and } u_\mu $	ν_e only	ν_{μ} only	
HKKM11 [20]	22.2	5.3	12.2	
HKKM07 [19]	22.5	6.8	12.1	p = 0.51 for HKKM1′
Bartol [21]	30.7	6.6	17.0	
FLUKA [22]	25.6	5.4	15.2	p = 0.13 for Barto
DOF	23	11	12	p = 0.32 for FLUKA

flux model case. The normalization and spectral index agrees within the 1σ error for every model, except from the fitted spectral index of FLUKA ν_{μ} which deviates by 2.7 σ .

Статистический анализ

γ² - критерий согласия расчета с экспериментом

$$\chi^2 = \sum_{i=1}^{\text{ndf}} \frac{(\Phi_i^{\text{exp}} - \Phi_i^{\text{calc}})^2}{(\Delta \Phi_i^{\text{exp}})^2} \tag{1}$$

выражении (1) пренебрегают различием между величинами B статистических ошибок измерений, оцененных "сверху" и "снизу" центрального значения потока, и используют в анализе средние значения. Это допущение качественно не влияет на результаты вычислений χ^2 и выводы анализа, поскольку ошибки измерений потоков составляют от 30% до более 100%.

Значения границ энергетических бинов, полученные в экспериментах, определяют по сути статистические ошибки измерения средних энергий, которые должны быть учены в расчете χ^2 . Для этого расчетные кривые были усреднены в каждом экспериментальном бине по энергии 2)

$$<\Phi_{\nu}(\overline{E}_i)>=\frac{1}{\Delta E_i}\int_{E_i}^{E_{i+1}}\Phi_{\nu}(E)dE$$
 (2)

02.10.2020

Преимущество усреднения по бину

- Вычисленные по усредненным потокам значения χ² более аккуратны по сравнению со значениями потоков, вычисленных для средней энергии нейтрино.
- В расчете с усредненными по бинам потоками не теряется важная экспериментальная информация об ошибке определения энергии нейтрино;
- Исключается возможность случайного совпадения теоретического и экспериментального значений в точке средней энергии
- Формальное несовпадение значений в точке средней энергии не приводит к искусственному росту χ², не означающему на самом деле расхождения данных и теоретического расчета.

$\log_{10}(E/\text{GeV})$	$E^2\Phi$	$\sigma_{rel.}^{stat.}$ (%)	$\sigma_{rel.}^{syst.}$ (%)	
2.25	2.54×10^{-4}	±2.5	+63 -53 M. G. Aartsen et al.	Eur.
2.62	$0.97 imes 10^{-4}$	±2.3	+19 -49 Phys. J. C 75 (2015)	116
3.01	3.06×10^{-5}	±3.2	$^{+32}_{-42}$	
3.39	1.00×10^{-5}	±4.4	$^{+65}_{-28}$	
3.78	$3.64 imes 10^{-6}$	± 4.5	$^{+69}_{-43}$	
4.17	1.01×10^{-6}	±6.7	$^{+60}_{-40}$	
4.56	$2.65 imes 10^{-7}$	±13.1	+66 -37	
4.96	$6.44 imes 10^{-8}$	±19.0	+54 -52	
5.36	$1.85 imes 10^{-8}$	+45.8 -23.5	+61 -68	
5.76	$3.81 imes 10^{-9}$	+163 -26.0	+130 -68	

Так выглядят экспериментальные данные IceCube-59

TABLE III. The results of the binned ("second") fit to the ν_e flux for an E^{-2} spectrum, in four energy bins.

$\mathrm{log_{10}E_{\nu}^{min}-log_{10}E_{\nu}^{max}}$	$\langle {\rm E}_{\nu} \rangle$ (GeV)	${\rm E}_{\nu}^2 \Phi_{\nu} ({\rm GeVcm^{-2}s^{-1}sr^{-1}})$
2.0-2.5	270	$(1.0 \pm 0.9) \times 10^{-5}$
2.5-3.0	590	$(7.6 \pm 1.9) \times 10^{-6}$
3.0-4.0	2.5×10^{3}	$(6.4 \pm 2.6) \times 10^{-7}$
4.0-5.0	20.7×10^3	$(3.5 \pm 3.3) \times 10^{-8}$

M. G. Aartsen et al. Phys.Rev. 91, 122004 (2015)

или так

IceCube-79

Eur. Phys. J. C (2017) 77:692

Energy range [log ₁₀ (E/GeV)]	Center energy [log ₁₀ (E/GeV)]	Flux $\left[E^2 \frac{\text{GeV}}{\text{sr s cm}^2}\right]$	Total uncer	tainty	Stat. uncertainty	Cov. matrix (diag. el.)
2.10-2.40	2.26	1.84×10^{-4}	+22%	-3%	$\pm 3\%$	2.78×10^{-20}
2.40-2.70	2.55	1.22×10^{-4}	+ 5%	-7%	$\pm 2\%$	3.76×10^{-20}
2.70-3.00	2.84	5.07×10^{-5}	+ 16%	-17%	$\pm 4\%$	1.80×10^{-23}
3.00-3.30	3.17	2.80×10^{-5}	+6%	-12%	$\pm 4\%$	2.62×10^{-25}
3.30-3.60	3.43	1.37×10^{-5}	+ 58%	-27%	$\pm 4\%$	5.72×10^{-27}
3.60-3.90	3.76	5.69×10^{-6}	+ 78%	-40%	$\pm 5\%$	7.38×10^{-29}
3.90-4.20	4.05	1.68×10^{-6}	+ 39%	-15%	$\pm7\%$	8.73×10^{-31}
4.20-4.50	4.36	6.69×10^{-7}	+17%	-22%	$\pm 10\%$	1.62×10^{-32}
4.50-4.80	4.66	3.20×10^{-7}	+15%	-23%	$\pm 10\%$	2.35×10^{-34}
4.80-5.10	4.95	1.51×10^{-7}	+25%	-22%	$\pm 13\%$	6.11×10^{-36}
5.10-5.40	5.25	6.08×10^{-8}	+ 53%	-20%	$\pm 18\%$	1.20×10^{-37}
5.40-5.70	5.55	3.71×10^{-8}	+ 76%	-31%	$\pm 25\%$	5.43×10^{-39}
5.70-6.00	5.85	2.48×10^{-8}	+77%	-36%	$\pm 35\%$	3.00×10^{-40}
6.00-6.50	6.26	1.44×10^{-8}	+136%	-53%	$\pm 53\%$	5.31×10^{-42}

 Table 1
 Data points and uncertainties of the unfolding results

02.10.2020

Table 6. χ^2 / ndf and p-values calculations with standard numerical Python procedure for middle point (letf) and for bin-averaged data (right)

Model	χ^2/ndf	<i>p</i> -value	χ^2/ndf	<i>p</i> -value
Aartsen et al., IceCub	pe-59 2015 [3], $90^o < \theta <$	$120^{o}, ndf = 9$		
H3a, KM	0.79	0.62983	1.22	0.27846
H3a, QGSJET-II-03	0.31	0.97135	0.51	0.86769
H3a, SIBYLL-2.1	3.00	0.00138	3.89	5.81e-05
ZS, KM	0.89	0.53112	1.41	0.17860
ZS, QGSJET-II-03	0.31	0.97272	0.53	0.85222
ZS, SIBYLL-2.1	3.01	0.00135	4.02	3.72887
Aartsen et al., IceCub	pe-59 2015 [3], $120^{\circ} < \theta$	$< 180^{0}, { m ndf} = 8$		
H3a, KM	0.12	0.99854	0.12	0.99843
H3a, QGSJET-II-03	0.11	0.99875	0.05	0.99993
H3a, SIBYLL-2.1	0.94	0.48273	1.33	0.22355
ZS, KM	0.12	0.99865	0.15	0.99644
ZS, QGSJET-II-03	0.12	0.99849	0.07	0.99984
ZS, SIBYLL-2.1	0.98	0.44925	1.44	0.17545

M. G. Aartsen et al., Eur. Phys. J. C 75 (2015) 116

	H3a, KM (ZS, KM)	H3a, QGSJET-II-03 (ZS, QGSJET-II-03)	H3a, SIBYLL-2.1 (ZS, SIBYLL-2.1)
Abbasi et al., IceCube-40 2011 [4], $97^o < \theta < 180^o$	1.15/12 = 0.10	0.56/12 = 0.05	14.94/12 = 1.24
Aartsen et al., IceCube-59 2015 [3], $90^{\circ} < \theta < 120^{\circ}$	$\begin{array}{l} 10.96/9 = 1.22 \\ (12.66/9 = 1.41) \end{array}$	$\begin{array}{l} 4.60/9 = 0.51 \\ (4.79/9 = 0.53) \end{array}$	35.05/9 = 3.89 (36.15/9 = 4.02)
Aartsen et al., IceCube-59 2015 [3], $120^{\circ} < \theta < 180^{\circ}$	$\begin{array}{l} 0.97/8 = 0.12 \\ (1.22/8 = 0.15) \end{array}$	$\begin{array}{c} 0.41/8 = 0.05\\ (0.52/8 = 0.07) \end{array}$	10.63/8 = 1.33 (11.49/8 = 1.44)
Aartsen et al., IceCube-59 2015 [3], $90^o < \theta < 180^o$	$\begin{array}{l} 11.93/17 = 0.70 \\ (13.88/17 = 0.82) \end{array}$	5.01/17 = 0.30 (5.31/17 = 0.31)	45.68/17 = 2.69 (47.64/17 = 2.80)
Aartsen et al., IceCube-59 2015 [3], $90^{\circ} < \theta < 180^{\circ}$	4.79/10 = 0.48	3.58/10 = 0.36	17.98/10 = 1.80
Совместный анализ данных IceCube [4,3]	$\begin{array}{l} 13.08/29 = 0.45 \\ (13.88/17 = 0.82) \end{array}$	5.57/29 = 0.19 (5.31/17 = 0.31)	$\begin{array}{l} 60.62/29 = 2.09\\ (47.64/17 = 2.80) \end{array}$
M. G. Aartsen et al. Eur. Phys. J. C $\sim 1.1\sigma$ $\sim 3.8\sigma$!			

Table 3. Группы экспериментальных данных $dN_{\nu_{\mu}+\overline{\nu}_{\mu}}/dE$ и значения χ^2/ndf .

$$V_{\mu} + \overline{V}_{\mu}$$

	H3a, KM (ZS, KM)	H3a, QGSJET-II-03 (ZS, QGSJET-II-03)	H3a, SIBYLL-2.1 (ZS, SIBYLL-2.1)
Abbasi et al., IceCube-40 2011 [4], $97^{\circ} < \theta < 180^{\circ}$	1.15/12 = 0.10	0.56/12 = 0.05	14.94/12 = 1.24
Aartsen et al., IceCube-59 2015 [3], 90° < $\theta < 120^{o}$	$\begin{array}{l} 10.96/9 = 1.22 \\ (12.66/9 = 1.41) \end{array}$	$\begin{array}{l} 4.60/9 = 0.51 \\ (4.79/9 = 0.53) \end{array}$	35.05/9 = 3.89 (36.15/9 = 4.02)
Aartsen et al., IceCube-59 2015 [3], $120^{\circ} < \theta < 180^{\circ}$	$\begin{array}{c} 0.97/8 = 0.12 \\ (1.22/8 = 0.15) \end{array}$	$\begin{array}{c} 0.41/8 = 0.05 \\ (0.52/8 = 0.07) \end{array}$	$\begin{array}{l} 10.63/8 = 1.33\\ (11.49/8 = 1.44) \end{array}$
Совместный анализ данных IceCube [4,3]	$\begin{array}{l} 13.08/29 = 0.45 \\ (13.88/17 = 0.82) \end{array}$	$\begin{array}{c} 5.57/29 = 0.19 \\ (5.31/17 = 0.31) \end{array}$	$\begin{array}{l} 60.62/29 = 2.09 \\ (47.64/17 = 2.80) \end{array}$
Adrian-Martinez et al., ANTARES 2013 [6], $90^o < \theta < 180^o$	1.32/10 = 0.13	3.27/10 = 0.33	2.17/10 = 0.22
Abbasi et al., AMANDA-II 2010 [7], $100^{\circ} < \theta < 180^{\circ}$	21.43/9 = 2.38	31.38/9 = 3.49	6.52/9 = 0.72
Daum et al., Fréjus 1995 [8]	2.28/4 = 0.57	0.23/2 = 0.11	6.78/2 = 3.39
SK-I – SK-IV, Richard et al., 2016 [9]	3.65/4 = 0.91	4.01/2 = 2.01	1.38/2 = 0.6
Совместный анализ данных	41.76/56 = 0.75	44.46/52 = 0.86	77.47/52 = 0.55 1.48

Table 3. Группы экспериментальных данных $dN_{\nu_{\mu}+\overline{\nu}_{\mu}}/dE$ и значения χ^2/ndf .

Model	χ^2/ndf	<i>p</i> -value	χ^2/ndf	<i>p</i> -value
Abbasi et al., IceCube	e-40 2011 [3], $97^{\circ} < \theta < 1$	80° , ndf= 12		
H3a, KM	0.06	,	0.10	
H3a, QGSJET-II-03	0.06		0.05	
H3a, SIBYLL-2.1	1.04		1.24	
Aartsen et al., IceCub	e 2015 (IceCube-59) [2],	$90^{\circ} < \theta < 120^{\circ}, \text{ ndf} = 9$		
H3a, KM	0.79	0.630	1.22	0.279
H3a, QGSJET-II-03	0.31	0.971	0.51	0.868
H3a, SIBYLL-2.1	3.00	0.001	3.89	5.839
ZS, KM	0.89	0.531	1.41	0.179
ZS, QGSJET-II-03	0.31	0.973	0.53	0.852
ZS, SIBYLL-2.1	3.01	0.001	4.02	3.729
Aartsen et al., IceCub	e 2015 (IceCube-59) [2],	$120^{\circ} < \theta < 180^{\circ}, \text{ndf} = 8$		
H3a, KM	0.12	1	0.12	1
H3a, QGSJET-II-03	0.11	1	0.05	1
H3a, SIBYLL-2.1	0.94	0.483	1.33	0.224
ZS, KM	0.12	1	0.15	1
ZS, QGSJET-II-03	0.12	1	0.07	1
ZS, SIBYLL-2.1	0.98	0.449	1.44	0.176
Aartsen et al., IceCub	e 2017 (IceCube-79) [4],	$90^{\circ} < \theta < 180^{\circ}, \text{ndf} = 8$		
H3a, KM	4.61	0	5.46	0
H3a, QGSJET-II-03	2.57	0.008	2.36	0.015
H3a, SIBYLL-2.1	21.36	0	25.14	0

Table 2. The same values as in the Table 1 but obtained for the $dN_{\nu\mu+\overline{\nu}\mu}/dE$ data.

	H3a, KM (ZS, KM)	H3a, QGSJET-II-03 (ZS, QGSJET-II-03)	H3a, SIBYLL-2.1 (ZS, SIBYLL-2.1)
Aartsen et al., IceCube-79 DeepCore-13 2013 [1], 97° $<\theta<180^o$	$\begin{array}{l} 2.94/4 = 0.73 \\ (2.98/4 = 0.74) \end{array}$	$\begin{array}{c} 1.48/3 = 0.49 \\ (1.53/3 = 0.51) \end{array}$	$\begin{array}{c} 0.81/3 = 0.27 \\ (0.90/3 = 0.30) \end{array}$
Aartsen et al., IceCube-86 DeepCore-8 2015 [2], 97° $<\theta<180^o$	$\begin{array}{c} 6.40/4 = 1.60\\ (6.29/4 = 1.57) \end{array}$	$\begin{array}{l} 4.89/4 = 1.22 \\ (5.10/4 = 1.27) \end{array}$	5.44/4 = 1.36 (5.87/4 = 1.47)
Совместный анализ данных [1,2]	9.34/8 = 1.17 (9.27/8 = 1.16)	$\begin{array}{c} 6.37/7 = 0.91 \\ (6.63/7 = 0.95) \end{array}$	$\begin{array}{c} 6.25/7 = 0.89\\ (6.77/7 = 0.97) \end{array}$
SK-I – SK-IV, Richard et al., 2016 [9]	$\begin{array}{l} 8.44/2 = 4.22 \\ (7.21/2 = 3.61) \end{array}$	_	_
Совместный анализ данных	$\begin{array}{l} 17.78/10 = 1.78 \\ (16.48/10 = 1.65) \end{array}$	$\begin{array}{c} 6.37/7 = 0.91 \\ (6.63/7 = 0.95) \end{array}$	6.25/7 = 0.89 (6.77/7 = 0.97)

Table 4. Группы экспериментальных данных $dN_{\nu_e+\overline{\nu}_e}/dE$ и значения χ^2/ndf .

	H3a, KM (ZS, KM)	H3a, QGSJET-II-03 (ZS, QGSJET-II-03)	H3a, SIBYLL-2.1 (ZS, SIBYLL-2.1)
Abbasi et al., IceCube-40 2011 [4], $97^o < \theta < 180^o$	1.15/12 = 0.10	0.56/12 = 0.05	14.94/12 = 1.24
Aartsen et al., IceCube-59 2015 [3], 90° < $\theta < 120^o$	$\begin{array}{c} 10.96/9 = 1.22\\ (12.66/9 = 1.41) \end{array}$	$\begin{array}{l} 4.60/9 = 0.51 \\ (4.79/9 = 0.53) \end{array}$	35.05/9 = 3.89 (36.15/9 = 4.02)
Aartsen et al., IceCube-59 2015 [3], $120^{\circ} < \theta < 180^{\circ}$	$\begin{array}{c} 0.97/8 = 0.12 \\ (1.22/8 = 0.15) \end{array}$	$\begin{array}{c} 0.41/8 = 0.05 \\ (0.52/8 = 0.07) \end{array}$	$\begin{array}{l} 10.63/8 = 1.33\\ (11.49/8 = 1.44) \end{array}$
Aartsen et al., IceCube-59 2015 [3], 90° < $\theta < 180^{o}$	$\begin{array}{l} 11.93/17 = 0.70 \\ (13.88/17 = 0.82) \end{array}$	5.01/17 = 0.30 (5.31/17 = 0.31)	$\begin{array}{l} 45.68/17 = 2.69 \\ (47.64/17 = 2.80) \end{array}$
Aartsen et al., IceCube-59 2015 [3], $90^{\circ} < \theta < 180^{\circ}$	4.79/10 = 0.48	3.58/10 = 0.36	17.98/10 = 1.80
Совместный анализ данных IceCube [4,3]	$\begin{array}{l} 13.08/29 = 0.45 \\ (13.88/17 = 0.82) \end{array}$	$\begin{array}{c} 5.57/29 = 0.19 \\ (5.31/17 = 0.31) \end{array}$	$\begin{array}{l} 60.62/29 = 2.09\\ (47.64/17 = 2.80) \end{array}$
Adrian-Martinez et al., ANTARES 2013 [6], $90^o < \theta < 180^o$	1.32/10 = 0.13	3.27/10 = 0.33	2.17/10 = 0.22
Abbasi et al., AMANDA-II 2010 [7], $100^{\circ} < \theta < 180^{\circ}$	14.75/9 = 1.64	24.31/9 = 2.70	3.52/9 = 0.39
Daum et al., Fréjus 1995 [8]	2.28/4 = 0.57	0.23/2 = 0.11	6.78/2 = 3.39
SK-I – SK-IV, Richard et al., 2016 [9]	3.65/4 = 0.91	4.01/2 = 2.01	1.38/2 = 0.6
Совместный анализ данных	35.08/56 = 0.63	37.39/52 = 0.72	74.47/52 = 1.43

Table 3. Группы экспериментальных данных $dN_{\nu_{\mu}+\overline{\nu}_{\mu}}/dE$ и значения χ^2/ndf .

02.10.2020

$$V_e + \overline{V}_e$$

Table 1. Theoretical models, values of absolute and relative χ^2 divided by number of points (denote by ndf) included into the data sets of $dN_{\nu e+\overline{\nu}e}/dE$, and *p*-values calculated with standard numerical Python procedure. Values listed in the left and right parts of the Table are calculated with middle and bin-averaged experimental data, respectively.

Model	χ^2/ndf	<i>p</i> -value	χ^2/ndf	<i>p</i> -value	
Aartsen et al., IceCube-79 DeepCore-13 2013 [1], $97^{\circ} < \theta < 180^{\circ}$, ndf= 3					
H3a, KM	0.94	0.419	0.61	0.607	
H3a, QGSJET-II-03	0.79	0.501	0.49	0.686	
H3a, SIBYLL-2.1	0.48	0.699	0.27	0.846	
ZS, KM	0.97	0.406	0.60	0.612	
ZS, QGSJET-II-03	0.84	0.470	0.51	0.676	
ZS, SIBYLL-2.1	0.55	0.647	0.30	0.825	
Aartsen et al., IceCube-86 DeepCore-8 2015 [2], $97^{\circ} < \theta < 180^{\circ}$, ndf= 4					
H3a, KM	1.70	0.147	1.60	0.171	
H3a, QGSJET-II-03	1.30	0.266	1.22	0.299	
H3a, SIBYLL-2.1	1.39	0.233	1.36	0.245	
ZS, KM	1.69	0.149	1.57	0.179	
ZS, QGSJET-II-03	1.36	0.243	1.27	0.277	
ZS, SIBYLL-2.1	1.52	0.195	1.47	0.209	
SK-I – SK-IV, Richard et al., 2016 [8], ndf= 2					
H3a, KM	6.09	0.002	4.22	0.015	
ZS, KM	5.30	0.005	3.61	0.027	

02.10.2020

Заключение

- ✓ Рассмотренные в работе модели *h*А-взаимодействий не противоречит эксперименту
- ✓ В описании экспериментальных данных по спектрам атмосферных нейтрино модели спектров космических лучей Зацепина-Сокольской и Hillas & Gaisser дают практически совпадющие результаты.
- ✓ Likelihood model по результатам анализа представлены в таблице

	AMANDA	IC59+IC40	ANTARES	Frejus	Combined
$\chi^2_{\rm min}$ / ndf	SIBYLL	QGSJET	KM	QGSJET	KM
	2.17/10	5.57/23	3.24/10	0.23/2	46.76/51

 ✓ Анализ данных IceCube -59 показывает, что статистическая значимость предсказаний модели Кимеля–Мохова чуть больше одного стандартного отклонения ниже (~1.1 *σ*) по отношению к модели QGSJET-II-03, и заметно выше статистической значимости модели SIBYLL-2.1 (~3.6 *σ* отклонения).

Резюме

	AMANDA	IC59+IC40	ANTARES	Frejus	Combined
χ^2_{min}/ ndf	SIBYLL	QGSJET	KM	QGSJET	KM
	2.17/10	5.57/23	3.24/10	0.23/2	46.76/51

 Сравнение расчета с данными эксперимента говорит об адекватности выбранного подхода, надежности выполненного расчета, в целом правильно отражающего детали механизма генерации атмосферных нейтрино. Рассчитанные спектры атмосферных нейтрино в основном правильно описывают экспериментальные результаты пределах одного-двух стандартных отклонений.

Acknowledgements

Авторы благодарят Д. В. Наумова за консультации, помощь в расчетах и полезные дискуссии.

Работа А. Д. Морозовой выполнена при финансовой поддержке гранта Иркутского государственного университета для молодых ученых № 091-20-306.

С. И. Синеговский благодарит Министерство науки и высшего образования РФ за финансовую поддержку (проект FZZE-2020-0017).

Спасибо за внимание!

χ²- критерий согласия расчета с экспериментом

$$\chi^2 = \sum_{i=1}^{\text{ndf}} \frac{(\phi_i^{\text{exp}} - \phi_i^{\text{calc}})^2}{\sigma_i^2}$$

Расчет спектра для энергии, восстановленной в эксперименте :

Усреднение по бину:
$$<\Phi_{\nu}(\overline{E}_{i})>=rac{1}{\Delta E_{i}}\int_{E_{i}}^{E_{i+1}}\Phi_{\nu}(E)dE$$

$$p$$
-value= $\int_{t_0}^{\infty} f(t; \mathrm{ndf}) dt, \qquad t_0 \sim \chi^2_{obs}$

02.10.2020

Основные источники атмосферных нейтрино

Частица (f)	Время жизни, с	Мода распада	Относительная ширина распада, %	Критическая энергия $\varepsilon_{\rm f}^{\rm cr}(0^0) = m_{\rm f}c^2H_0 / c\tau_{\rm f}$
μ_{e3}^{\pm}	2.19×10^{-6}	$e^{\pm} + v_e(\overline{v}_e) + \overline{v}_{\mu}(v_{\mu})$	100	1.03 ГэВ
π^{\pm}	2.60×10 ⁻⁸	$\mu^{\pm} + \nu_{\mu}(\overline{\nu}_{\mu})$	99.987	115 ГэВ
$K_L^0: K_{Le3}^0$ $K_{L\mu3}^0$	5.12×10 ⁻⁸	$\pi^{\pm} + e^{\mp} + \overline{\nu}_{e}(\nu_{e})$ $\pi^{\pm} + \mu^{\mp} + \overline{\nu}_{\mu}(\nu_{\mu})$	40.55 ± 0.11 27.04 ± 0.07	206 ГэВ
$K^{\pm}_{\mu 2}$ $K^{\pm}: K^{\pm}_{e 3}$ $K^{\pm}_{\mu 3}$	1.24×10 ⁻⁸	$\mu^{\pm} + \nu_{\mu}(\overline{\nu}_{\mu})$ $\pi^{0} + e^{\pm} + \nu_{e}(\overline{\nu}_{e})$ $\pi^{0} + \mu^{\pm} + \nu_{\mu}(\overline{\nu}_{\mu})$	63.55 ± 0.11 5.07 ± 0.04 3.35 ± 0.03	857 ГэВ
$K_S^0: K_{Se3}^0$ $K_{S\mu3}^0$	0.90×10 ⁻¹⁰	$\begin{aligned} \pi^{\pm} + e^{\mp} + \overline{\nu}_{e}(\nu_{e}) \\ \pi^{\pm} + \mu^{\mp} + \overline{\nu}_{\mu}(\nu_{\mu}) \end{aligned}$	$(7.04 \pm 0.08) \times 10^{-2}$ $(4.69 \pm 0.05) \times 10^{-2}$	120 ТэВ

	K_{S}^{0}	$\pi^+ + \pi^-$	$(69.20 \pm 0.05)\%$	ГэВ
		$\pi^{\mathrm{T}} + e^{+} + \overline{V}_{e} \left(V_{e} \right)$	$(7.04 \pm 0.09) \times 10^{-4}$	1.12×10^{5}
		$\pi^{\pm} + \mu^{\mp} + \overline{ u}_{\mu} (u_{\mu})$	$(4.66 \pm 0.07) \times 10^{-4}$	
	D^{\pm}	$e^{\pm} + v_{e}(v_{e}) + $ адроны	(17.2±1.9)%	
		$\mu^{\pm} + \nu_{\mu}(\overline{\nu}_{\mu}) + $ адроны	$(17.41 \pm 1.1)\%$	3.8×10 ⁷
F	D^{0}	$e^{+} + v_{e}^{-} + $ адроны	(6.71±0.29)%	
		$\mu^+ + \nu_\mu + $ адроны	$(6.5 \pm 0.7)\%$	9.6×10^{7}
-	$D_{\scriptscriptstyle S}^{\scriptscriptstyle \pm}$	$\tau^{\pm} + \nu_{\tau}(\overline{\nu_{\tau}})$	(6.4±1.5)%	
		$\mu^+ + u_\mu$	$(6.1\pm1.9)\cdot10^{-3}$	
		$e^{\pm} + v_e(\overline{v_e}) + $ адроны $l^+ + v_l + $ адроны	$(8^{+6}_{-5})\%$ (10.8±0.6)%	8.0×10^{7}
F	Λ_c^+	$e^{+} + v_{e}^{-} + $ адроны	$(4.5 \pm 1.7)\%$	
		$\mu^+ + \nu_\mu + $ адроны	$(2.0 \pm 0.7)\%$	2.4×10^{8}
02.10.2 کیڈ	U	0.011690vary /	กแท. กระแกกษอ	

Спектры прямых мюонных нейтрино (2)

M.G. Aartsen et al. (IceCube Collaboration), Phys. Rev. D 89, 062007 (2014)

TABLE VI. Model rejection factors for different theoretical predictions of prompt atmospheric neutrino fluxes [11–13]. If not noted otherwise, these models are the original published models and have not been modified for a more accurate cosmic-ray flux parametrization. Except for the baseline model ERS08 with H3a knee, MRFs are based on a χ^2 approximation.

Model	MRF
ERS08 + H3a [13,15]	3.8
ERS08 [13]	4.8
ERS08 (max) [13]	3.8
ERS08 (min) [13]	8.2
MRS03 (GBW) [11]	9.9
MRS03 (MRST) [11]	8.0
MRS03 (KMS) [11]	8.3
BNSZ89 (RQPM) [12]	0.5
BNSZ89 (QGSM) [12]	1.8

 Статистическая значимость, с которой одна модель предпочтительней другой, измеренная в гауссовых стандартных отклонениях (σ), приближенно можно найти из соотношения

$$K_{a\beta} \simeq \sqrt{\chi^2_{(\alpha)} - \chi^2_{(\beta)}} / \sigma$$

02.10.2020

Интервалы энергии и ошибки измерений

В 2013-2015 году были опубликованы результаты измерений спектра атмосферных нейтрино в эксперименте IceCube [29–31]: $\nu_{\mu} + \bar{\nu}_{\mu}$ для интервала энергий 100 ГэВ – 575 ТэВ и $\nu_e + \bar{\nu}_e$ для энергий 80 ГэВ – 20 ТэВ. Детальное сравнение расчета с данными IceCube и ANTARES [32] можно найти в работах [17, 33–35]. Здесь мы добавили новые экспериментальными данные по мюонным нейтрино (рис. 5а)– спектр, измеренный на установке Super-Kamiokande [20] (\blacktriangle) (на рисунке представлены только четыре точки для $E_{\nu} > 10$ ГэВ), и обработку данных IceCube79 [21] (крестики).

 $V_{\mu} + \overline{V}_{\mu}$

 $V_{\mu} + \overline{V}_{\mu}$

 $v_e + \overline{v}_e$ 80 GeV–20 TeV,

IceCube: 100 GeV–575 TeV80 GeV–20 TeV,Frejus: $E_{\nu} \leq 1$ TэBAMANDA-II:1–100 TeV,AMANDA-II:1–100 TeV,ANTARES:100 GeV–200 TeV,Super-K.:< 10 TeV, 13%-21%</th>< 100 GeV</th> $\Delta \Phi_{i}^{\nu}/\Phi_{i}^{\nu}$ = 15%-192%

Статистические ошибки измерений потоков - 18% - 60%, систематические ~ 16% для всего исследуемого интервала энергий.