High-energy v **astronomy** Results and Perspectives

Christian Spiering, DESY Zeuthen 36 всероссийская конференция по космическим лучам

Neutrino Telescopes

Physics Goals

Physics with neutrino telescopes

- Search for the sources of high-energy cosmic rays
- Dark Matter and Exotic Physics
 - WIMPs
 - Magnetic Monopoles and other superheavies
 - Violation of Lorentz invariance
- Neutrino and Particle Physics
 - Neutrino oscillations
 - Charm physics
 - Cross sections at highest energies
- Supernova Collapse Physics
 - MeV neutrinos in bursts → early SN phase, neutrino hierarchy, ...
- Cosmic Ray Physics
 - Spectrum, composition and anisotropies, shadows of moon and Sun

Physics with neutrino telescopes

- Search for the sources of high-energy cosmic rays
- Dark Matter and Exotic Physics
 - WIMPs
 - Magnetic Monopoles and other superheavies
 - Violation of Lorentz invariance
- Neutrino and Particle Physics
 - Neutrino oscillations
 - Charm physics
 - Cross sections at highest energies
- Supernova Collapse Physics
 - MeV neutrinos in bursts → early SN phase, neutrino hierarchy, ...
- Cosmic Ray Physics
 - Spectrum, composition and anisotropies, shadows of moon and Sun

Physics with neutrino telescopes

Search for the sources of high-energy cosmic rays

$p + target \rightarrow \pi^{+ic} \pi^{+ic}$

- + v_{μ} $\rightarrow e^{+} + v_{e} + \overline{v}_{\mu}$ Magnetic Monopoles and other sup
- Violation of Lorentz invariance
- **Neutrino and Particle Physics**
 - **Neutrino oscillations**
 - Charm physics
 - Cross sections at highest energies
- **Supernova Collapse Physics**

at source: v_e : v_μ : v_τ = 1:2:0 at Earth: $v_e : v_\mu : v_\tau = 1:1:1$

- MeV neutrinos in bursts \rightarrow early SN phase, neutrino hierarchy, ...
- Cosmic Ray Physics
 - Spectrum, composition and anisotropies

Neutrino Telescopes

Detection Principles

The traditional method: v_{μ} charged current

μ

μ

Detection Modes

- Muon track from CC muon neutrino interactions
 - Angular resolution 0.1° 0.5°
 - Energy resolution from dE/dx: factor 2-3

- Cascade from CC electron and NC all flavor interactions
 - Angular resolution 2° 15°
 - Energy resolution ~ 15%

Detection Modes

- Muon track from CC muon neutrino interactions
 - Angular resolution 0.1° 0.5°
 - Energy resolution from dE/dx: factor 2-3

- Cascade from CC electron and NC all flavor interactions
 - Angular resolution 2° 15°
 - Energy resolution ~ 15%

Neutrino Telescopes

The Detectors

Generation-1 devices (0.002-0.02 km³)

Generation-2 devices (km³ scale)

Generation-3 device (10 km³ scale)

Worldwide Common Effort

Worldwide Common Effort

The Global Neutrino Network

GNN

- Exchange knowledge, software, people
- Develop common strategy
- Combine data (skymaps, ..)
- Cross check of results
- Cooperate in multimessenger and alert programs
- Topical Workshops
- Monthly Newsletter

The pioneer: NT200 in Lake Baikal

A textbook underwater neutrino event

ANTARES

IceCube Neutrino Observatory

IceCube 86 strings including 8 Deep Core strings 60 PMT per string

DeepCore 8 closely spaced strings

- ~220 v/day
- Threshold
 - IceCube ~ 100 GeV
 - DeepCore ~10 GeV

2450m

1450m

2820m

Cosmic Rays and Atmospheric Muons

Cosmic Rays and Atmospheric Muons

- Spectrum of Cosmic Rays (air showers with IceTop)
- Spectrum, Composition and Anisotropies of Cosmic Rays (muons with IceCube, air showers with IceTop)

- Shadow of moon and Sun with muons (ANTARES and IceCube)
 - a) detector calibration (angular resolution and absolute pointing)
 b) solar magnetic fields

Shadow of the moon

IceCube with the first 59 of the final 86 strings Phys. Rev. D 89, 102004 (2014)

ANTARES Eur. Phys. Journal C 78 1006 (2018)

Angular resolution ~ 0.7°

Angular offset < 0.5°

Shadow of the Sun

IceCube (2018, 2020) Temporal variation over seven years

late 2010 - early 2017

ApJ, 872 (2019) 133 and

more recently arXiv:2006.16298

Shadow of the Sun

IceCube (2018, 2020) Temporal variation over seven years

Atmospheric Neutrinos

Atmospheric neutrinos in IceCube (2 years)

Atmospheric neutrinos in IceCube (2 years)

Using atmospheric neutrinos to measure σ_v at > TeV

IceCube Coll.: Measurement of the multi-TeV neutrino cross section with IceCube using Earth absorption Nature 551 (2017) 596 and arXiv:1711.08119

Using atmospheric neutrinos to measure σ_v at > TeV

IceCube Coll.: Measurement of the multi-TeV neutrino cross section with IceCube using Earth absorption Nature 551 (2017) 596 and arXiv:1711.08119

DeepCore: Oscillations for atmopheric neutrinos (E < 30-40 GeV)

DeepCore: Oscillations for atmopheric neutrinos (E < 30-40 GeV)

The Discovery of a Diffuse Cosmic Neutrino Flux

Special search for neutrinos with $E_v > 500 \text{ TeV}$

2.8 σ

IC79/IC86

Follow-up Analysis: HESE (High Energy Starting Event)

4.1σ

5.9σ

~7σ

First evidence for an extra-terrestrial h.e. neutrino flux

Follow-up Analysis: HESE (High Energy Starting Event)

First evidence for an extra-terrestrial h.e. neutrino flux

Through-going muons, IC-79/86

The Astrophysical Neutrino Flux

The Astrophysical Neutrino Flux

The Astrophysical Neutrino Flux

M. Santander, talk at Neutrino 2020

Flux modeled with simple power law:

$$\Phi(E_{\nu}) = \Phi_{\rm astro} \left(\frac{E_{\nu}}{100 \text{ TeV}}\right)^{-\gamma_{\rm astro}}$$

- Different events samples (energy, topology, sky hemisphere) favor slightly different indices and normalisations.
- Broken spectrum?
- → Need independent measurements with different systematics: KM3NeT, GVD !

Flavor composition: what do we expect?

Flavor composition: what do we measure?

 $\nu_{\rm e}:\nu_{\mu}:\nu_{\tau}$ at source 0.00 200:1:01.001:2:0180.1 1:0:0A 0.83160.33 1495 % 0.6768 % 0:50 ν_{τ} u_{μ} 120.50100.67 0.338 68 % 0.93 95 % 60.171.00 00:0 4 0.00 $\mathbf{2}$ 0.50 <9.0 с^в.) è <1:0 с?? ?? 0 $\nu_{
m e}$

the best fit flavor composition disfavors 1:0:0 at source at 3.6 σ

Individual Sources and Source Classes

IceCube, 10 years

Some evidence for non-uniform skymap in 10 years of IceCube data (3.3σ) . Mostly resulting from 4 extragalactic source candidates.

No indications for galactic sources.

Combining ANTARES and IceCube data

Here: ANTARES and IceCube Combined Search for Neutrino Point-like and

Extended Sources in the Southern Sky

Astrophys. J. 892 (2020) 92

90% C.L. Sensitivity and Limits for $\gamma = 2.0$

90% C.L. Sensitivity and Limits for γ = 2.5

Similar combined searches exist for galactic diffuse emission and galactic dark matter

Neutrinos from GRB

Energy \rightarrow

Constraints on the contribution to the diffuse flux

Constraining the contribution of Gamma-Ray Bursts to the high energy diffuse neutrino flux with 10 years of ANTARES data https://arxiv.org/pdf/2008.02127.pdf

Individual fluences calculated for each of the 784 GRBs (thin lines) and the corresponding stacked fluence (thick line)

Example:

recent ANTARES result (10 times less sensitive than IceCube limit !)

Constraints on the contribution to the diffuse flux

Translation of the stacked fluence to the corresponding quasidiffuse neutrino flux (colored band: min.-to-max. range)

Constraints on the contribution to the diffuse flux

Quasi-diffuse flux for 784 GRBs:

model: red solid line ANTARES 90% CL upper limit: dashed red line. IceCube best fits for vµ tracks and HESE events: blue and green

GRB cannot contribute more than 10% (ANTARES) / <u>1% (IceCube)</u> to the IceCube diffuse flux at 100 TeV.

Other stacking searches

Similar stacking searches have been performed for

- Gamma-loud blazars
- Flat spectrum radio quasars (FSRQs)

with all IceCube searches resulting in upper limits

 See, however, A. Plavin, Y. Kovalev, Yu. Kovalev, S. Troitsky:
 Directional association of TeV to PeV astrophysical neutrinos with active galaxies hosting compact radio jets, arXiv:2009.08914, subm. to ApJ, and yesterday talk of A. Plavin Two Very Special Events

The first candidate for the Glashow resonance

The first candidate for the Glashow resonance

Partially contained event with E = 6.3 PeV

First tau-neutrino candidate

Two candidate events in 7.5 years of data

Looking for double-bang events (Tau decay length is ~ 50 m at 1 PeV)

Multi-Messenger Results

Alerts to optical, radio and gamma-ray telescopes and to x-ray detectors on satellites

The first point source candidate

22. September 2017, 20:54 UTC

The first point source candidate

- 43 seconds later: first alarm with preliminary direction
- Sequence of refined reconstruction algorithms
- ~ 4 hours later: GCN Circular issued
- Only 0.1° off the position of the known γ-ray blazar
 TXS 0506+056.

Most probable energy of the neutrino ~290 TeV.

Broad multi-wavelength campaign

28. 9. Fermi-Satellite: Source: Active Galaxy TXS 0505+056, in a flaring state

From 29.8. on MAGIC looks longer than the initial hour to TXS 05060+056 and observes it flaring with high significance

Follow-up Observations of IceCube Alert IC170922

Looking back to archival data

Science 361 (2018) 147

Conclusions on TXS 0506+056

Strong evidence (but not yet an undisputable discovery, i.e. an effect of 5 standard deviations), that blazars, especially TXS 0506+056, belong to the sites of very-high-energy cosmic ray acceleration.

Fantastic demonstration of the potential of multi-messenger observations !

Search for neutrinos from GW170817

See "SEARCH FOR HIGH-ENERGY NEUTRINOS FROM BINARY NEUTRON STAR MERGER GW170817 WITH ANTARES, ICECUBE, AND THE PIERRE AUGER OBSERVATORY"

Search for neutrinos from GW170817

Figure from "SEARCH FOR HIGH-ENERGY NEUTRINOS FROM BINARY NEUTRON STAR MERGER GW170817 WITH ANTARES, ICECUBE, AND THE PIERRE AUGER OBSERVATORY", Figure taken from K. Murase, I. Bartos, *Ann.Rev.Nucl.Part Sci*. 69, 477. Baikal results: JETP Letters, 108, 12

Summary of where we stand

- Cosmic high-energy v discovered
- Opened new window, but landscape not yet charted: no steady point sources identified up to now
- Also: remaining uncertainties on spectrum and flavor composition
- Some individual sources in reach!
- Excluded GRB, Blazars, as sole source of HESE events

Where do we go?

GIGATON VOLUME DETECTOR BAIKAL GVD

See the talk of G.V. Domogatsky

Year	Total number of clusters	Total number of strings	Number of OMs
2016	1	8	288
2017	2	16	576
2018	3	24	864
2019	5	40	1440
2020	7	56	2016
2021	9	72	2592
2022	11	88	3168
2023	13	104	3744
2024	15	120	4320

 \mathbf{O}

Baikal GVD: examples of first results

Upward going muons from neutrino interactions (single cluster events)

- High energy cascades
 - Livetime 4.36 years × cluster:

12 candidates with E ≥ 100 TeV and > 19 hits, plus 2 upward going events with 93.3 TeV (35 hits) and 22.9 TeV (23 hits)

Limits on neutrinos from GW 170817 (see previous slides on multi-messenger results)

The Pacific Ocean Neutrino Experiment

Prototyping for a multicluster array at the km³ scale (Canadian Pacific coast)

Makes use of existing infrastructure of oceanographers

Until now still rather small collaboration

Would add observation power at the Northern Hemisphere

KN3NET

KM3NeT: ORCA and ARCA

ORCA: determination of the Neutrino Mass Hierarchy, precision oscillation physics

ARCA: IceCube physics, but with better angular resolution and from the Northern hemisphere

KM3NeT: ORCA and ARCA

- 31 PMTs in one sphere
- ~3 times cathode area of ANTARES Optical Module
 Directional information

Completion planned for 2024

Completion planned for 2026

Each block has 115 strings with 18 Digital Optical Modules (DOMs)

Taken from Dorothea Samtleben, talk at Neutrino 2020

KM3NeT: Measured depth-intensity curve

ORCA: Zenith Distribution of atm. v

ORCA

200 m

Important for point sources: Angular resolution

arXiv:2008.04323

10 PeV to >10 EeV

10 TeV – 50 PeV

100 GeV – 5 PeV

improves DeepCore
performance at < 10 GeV</pre>

Neutrino energy (GeV)

Sensitivity of the IceCube-Gen2 radio array in comparison to models, existing upper limits, and the 10 year sensitivity of the proposed GRAND array of 200,000 antennas.

Galactic sources with IceCube-Gen2

Discovery potential

Comparison of local density and luminosity of extragalactic neutrino source populations to the discovery potential of IceCube and IceCube-Gen2.

Several candidate populations are marked by the required neutrino luminosity to account for the full diffuse flux .

Orange band: luminosity / density range that is compatible with the total observed diffuse neutrino flux. Lower (upper) edge of the band: rapid (no) redshift evolution.

Shaded regions IceCube's (blue, dashed line) and IceCube-Gen2's (green, solid line) ability to discover one or more sources of the population.

Conclusions

- High-energy neutrino window is openedExtremely dynamical field
- Northern hemisphere: towards cubic kilometer detectors.
 Baikal-GVD, KM3NeT-ARCA, (PON)
- Soon later IceCube towards 10 km³
- Mid 2020s and later: fill landscape of v sources with more and more entries. Close-in on cosmic ray sources ! (?)

СПАСИБО ЗА ВАШЕ ВНИМАНИЕ