36 Всероссийская конференция по космическим лучам 28 сентября – 2 октября 2020 года НИИЯФ МГУ

Временные вариации потока ядер лития ГКЛ с 2006 по 2014 гг. по данным эксперимента PAMELA

Епифанов А.А., Майоров А.Г.

Прохождение ГКЛ через гелиосферу. Солнечная модуляция

Уравнение переноса КЛ в рамках современных представлений

$$\frac{\partial f(x_i,p,t)}{\partial t} = \nabla_i \Big(k_{ij} \cdot \nabla_j f\Big) - v_i \cdot \nabla_i f - v_i^{\text{drift}} \cdot \nabla_i f + \frac{1}{3} (\nabla_i v_i) \frac{\partial f}{\partial \ln p} + \frac{1}{p^2} \frac{\partial}{\partial p} \bigg(p^2 D_{pp} \frac{\partial f}{\partial p}\bigg) + Q(x_i,p,t)$$
нестационарность гелиосферы диффузия конвекция дрейф адиабатические потери доускорение на неоднородностях

где $f(x_i, p, t)$ — функция распределения КЛ, x_i , t — координаты и время наблюдения внутри гелиосферы, p — импульс частицы, v_i — скорость солнечного ветра, v_i^{drift} — скорость дрейфа частиц вдоль линий магнитного поля, k_{ij} — тензор диффузии, D_{pp} — коэффициент диффузии в импульсном пространстве.

Параметры гелиосферы (напряженность магнитного поля, характеристики плазмы) зависят от солнечной активности.

Уравнение переноса решается отдельно для каждого типа частиц.

Прецизионные измерения потоков КЛ

Динамика спектра протонов по мере приближения к минимуму солнечной активности. Данные эксперимента PAMELA [1].

Потоки протонов $(1.19 - 1.40\ \Gamma \ni B)$ и ядер гелия $(1.12 - 1.29\ \Gamma \ni B/н)$ с 2011 по 2017 годы по данным AMS-02 (усреднение за месяц). Данные потоков протонов $(1.12 - 1.28\ \Gamma \ni B/н)$ инструмента EPHIN на SOHO [2].

Цель работы:

□ Восстановление временных вариаций потоков литиевой компоненты ГКЛ в рамках 11-летнего цикла солнечной активности

Задачи

- Построение критериев отбора ядер лития по данным эксперимента PAMELA
- Восстановление эффективности прибора PAMELA и критериев отбора для ядер лития
- Построение дифференциального энергетического спектра потока литиевой компоненты ГКЛ и восстановление его вариаций в течение 11-летнего цикла солнечной активности

Эксперимент PAMELA

(Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics)

Схема магнитного спектрометра РАМЕLА

- Времяпролетная система (ВПС/ТоF)
 - \blacksquare Скорость β
 - Ионизационные потери dE/dx
- **Трековая система в магнитном поле (Трекер)**
 - Координаты прохождения частицы
 - Магнитная жесткость Rig
 - Ионизационные потери dE/dx
- □ Система Антисовпадений
- □ Электромагнитный Калориметр
 - Ионизационные потери dE/dx
 - Измерение энергии e^-, e^+
 - Разделение лептон/адрон
- □ Детектор утечки ливня (S4) и Детектор нейтронов
 - Разделение лептон/адрон

Базовые критерии отбора

- Отсутствие срабатывания системы Антисовпадений (CAT, CARD)
- Восстановлен трек по трековой системе
- Восстановленный трек не проходит через объем магнита
- Событие должно быть зарегистрировано в каждой паре плоскостей ВПС
- Измерена скорость частицы β
- Отбор событий, зарегистрированных на L > 5

Критерии отбора ядер Li • dE/dx [Трекер] от Rig

- dE/dx [Tpekep] or β
- dE/dx [BПС] от β

Уравнение кривой фитирования:

$$\frac{dE}{dx} = A_1 \left(1 + \frac{A_3}{R^2} \right) \left[\ln \left(\frac{A_2 R}{A_3 + R^2} \right) - \frac{R^2}{A_3 + R^2} + A_4 \right] + A_5, \qquad (R > 2 \ GV)$$

$$\frac{dE}{dx} = A_1 \left(1 + \frac{A_3}{R^2} \right) \left[\frac{R^2}{A_4 + R^2} \right], \qquad (R < 2 \text{ GV})$$

где R – жесткость частицы, A_i – параметры фитирования, а уравнение представляет собой параметризованную формулу Бете-Блоха, преобразованную к виду dE/dx(Rig).

Критерии отбора ядер лития

Ограничивающие линии на зависимости dE/dx в трекере от жесткости (Rig)

Черные линии ограничивают ~95% процентов ядер лития. Линии построены с помощью фитирования данных моделирования Geant4 параметризованной формулой Бете-Блоха. Рассматриваемый энергетический диапазон для ядер лития: ~0.5-100 ГВ.

Оценка качества критериев по данным калориметра

	Доля "фона"			
Диапазон Жесткости	0.5 - 2 GV	2 - 5 GV	5 - 10 GV	10 - 100 GV
Моделир.	8.69% ± 0.07%	5.01% ± 0.03%	4.78% ± 0.04%	4.03% ± 0.05%
Эксперим.	$7.26\% \pm 0.46\%$	5.49% ± 0.25%	6.05% ± 0.44%	5.02% ± 0.67%

Зависимость ионизационных потерь в первой плоскости калориметра от скорости частицы.

Данные моделирования (красный) и отобранные экспериментальные события (черный).

Синим выделены разделяющие линии, используемые для оценки критериев.

Предварительные результаты. Спектр потока ядер лития ГКЛ.

Спектры ядер лития ГКЛ, усредненные за 8 годовых интервалов с 2006 по 2014 годы.

Предварительные результаты. Вариации спектра ядер лития ГКЛ.

Вариации спектра ядер лития ГКЛ в период <u>спада</u> солнечной активности

Предварительные результаты. Вариации спектра ядер лития ГКЛ.

Вариации спектра ядер лития ГКЛ в период <u>роста</u> солнечной активности

Предварительные результаты. Динамика спектров в определенных диапазонах жесткостей.

Заключение

В работе исследовалось вариации потоков ядер лития с 2006 по 2014 год по данным эксперимента РАМЕLA.

- ✓ Построены критерии отбора ядер лития ГКЛ по данным эксперимента PAMELA
- ✓ Определено качество критериев по выделению литиевой компоненты с помощью сравнения данных моделирования и отобранных событий эксперимента.
- ✓ По данным эксперимента PAMELA построены временные вариации спектра литиевой компоненты ГКЛ в диапазоне жесткостей от 0.5 до 100 ГВ на 8 летнем интервале с 19.06.2006 по 17.09.2014.

В дальнейшем планируется восстановить вариации спектров ядер бериллия и бора, а также провести анализ полученных результатов в рамках современных представлений о процессах переноса КЛ.

BackUp слайды

PAMELA – Payload for Antimatter Matter Exploration and Light-Nuclei

(2006 - 2016) (10 лет)

Космический эксперимент, реализованный на околоземной орбите.

Основная задача:

Изучение спектров anti-p, e+.

Изучение спектров p, d и легких ядер ГКЛ от He до O.

Детектор типа Магнитный Спектрометр:

Постоянный магнит,

Кремниевая трековая система – потери и траектория,

ВПС на пластиковых сцинтилляторах – потери и скорсоть,

АС на пластиках,

ЭМ гетерогенный калориметр,

Детектор нейтронов и хвостовой сцинтиллятор.

Основные результаты:

Спектры $(0.1 \sim 500 \text{ GeV/N})$ p, d, anti-р и ионов Z >= 2. Спектры (0.05 - 2000 GeV) e+e-.

Непрерывные данные по вариации потоков для р и Не в период 23-24 циклов солнечной активности.

Критерии отбора ядер лития

Ограничивающие линии

Уравнение кривой фитирования:

$$\frac{dE}{dx} = A_1 \left(1 + \frac{A_3}{R^2} \right) \left[\ln \left(\frac{A_2 R}{A_3 + R^2} \right) - \frac{R^2}{A_3 + R^2} + A_4 \right] + A_5,$$

где R — жесткость частицы, A_i — параметры, а уравнение представляет собой параметризованную формулу Бете-Блоха, преобразованную к виду dE/dx(Rig).

Характеристические линии, построенные на основе параметризованной формулы Бете-Блоха

Критерии отбора ядер лития

Гиперболическое дополнение в области низких энергий

Уравнение кривой фитирования гиперболического дополнения:

$$\frac{dE}{dx} = A_1 \left(1 + \frac{A_3}{R^2} \right) \left[\frac{R^2}{A_4 + R^2} \right],$$

где R — жесткость частицы, A_i — параметры, а уравнение представляет собой параметризованную гиперболическую часть формулы Бете-Блоха.

Поведение Формулы Бете-Блоха (Модель 1) и ее гиперболической части (Модель 2) при низких энергиях