

Алтайский государственный университет, Барнаул, Россия

Особенности энергетических спектров первичных и вторичных ядер космических лучей: согласованная астрофизическая интерпретация

А.А. Лагутин, Н.В. Волков

Анализ данных ATIC-2, CREAM, PAMELA. AMS-02. DAMPE и CALET по спектрам различных групп ядер показал, что они не описываются степенным законом. В области $R > 100 \; \Gamma B$ наблюдается уполаживание спектров. Эту особенность поведения спектров принято в англоязычной литературе называть «hardening».

Спектральные индексы ядер КЛ по данным AMS-02

Особенности спектров ядер космических лучей

- В эксперименте AMS-02 установлено, что в области $R \sim 60 \ \mbox{ГB} \div 3 \ \mbox{TB}$ спектры групп ядер He, C, O и Ne, Mg, Si имеют практически одинаковую зависимость от жесткости R.
- Спектры вторичных ядер Li, Be, B также имеют одинаковую зависимость от жесткости *R*. В области *R* > 200 ГВ спектры уполаживаются быстрее, чем спектры He, C, O.

Главная цель доклада — представить сценарий, который позволяет дать самосогласованное объяснение основных особенностей энергетических спектров первичных и вторичных ядер космических лучей.

Ключевые положения модели

- Все частицы с жесткостями $30 \leq R \leq 5 \cdot 10^7$ ГВ, наблюдаемые в Солнечной системе, ускоряются галактическими источниками, спектр генерации степенной $J \propto R^{-\gamma}$.
- Источники КЛ делятся на две группы: многочисленные старые ($t \ge 10^6$ лет) удаленные ($r \ge 1$ кпк) и близкие молодые источники (r < 1 кпк, $t < 10^6$ лет).
- Резко-неоднородный характер распределения вещества и магнитного поля в Галактике приводит к неклассическому характеру диффузии КЛ.

Важным следствием обобщения модели нормальной диффузии являются: Полеты Ле́ви: Степенное распределение свободных пробегов частиц r в межзвездной среде

$$p(\mathbf{r}, R) \propto A(R, \alpha) r^{-\alpha - 1}, \quad r \to \infty, \quad 0 < \alpha < 2.$$

Ловушки Ле́ви: Плотность распределения q(t,R) времени t пребывания частиц в неоднородностях среды также имеет степенное распределение

$$q(t,R) \propto B(R,\beta)t^{-\beta-1}, \quad t \to \infty, \quad \beta < 1.$$

Уравнение неклассической диффузии Без учета потерь энергии ($\alpha \in (0,2], \beta \in (0,1]$)

$$\frac{\partial N}{\partial t} = -D(R,\alpha,\beta) \mathcal{D}_{0+}^{1-\beta} (-\Delta)^{\alpha/2} N(\mathbf{r},t,R) + S(\mathbf{r},t,R),$$
(1)

где $D(R, \alpha, \beta) \sim A(R, \alpha)/B(R, \beta) = D_0(\alpha, \beta)(R/1 \ \mathsf{\Gamma B})^\delta$ — коэффициент неклассической диффузии.

Дробный лапласиан (оператор Рисса) $\int\limits_{\mathbf{R}^m} \mathrm{e}^{ikx} (-\Delta)^{lpha/2} f(x) \, dx = |k|^lpha ilde{f}(k).$

Дробная производная Римана-Лиувилля

0

$$\int\limits^{\infty} e^{-\lambda t} \mathrm{D}^{\beta}_{0+} f(t) dt = \lambda^{\beta} \tilde{f}(\lambda).$$

(3)

(2)

Решение для точечного импульсного источника

$$S(\mathbf{r}, t, R) = S_{\rm im} R^{-\gamma} \delta(\mathbf{r}) \Theta(T - t) \Theta(t)$$

$$N(\mathbf{r}, t, R) = \frac{S_{\rm im} R^{-\gamma}}{D(R, \alpha, \beta)^{3/\alpha}} \left[\int_{\max[0, t-T]}^{t} d\tau \tau^{-3\beta/\alpha} \Psi_3^{(\alpha, \beta)} \left(|\mathbf{r}| (D(R, \alpha, \beta) \tau^{\beta})^{-1/\alpha} \right) \right].$$
(4)

Дробно-устойчивое распределение $\Psi_3^{(lpha,eta)}(r)$

$$\Psi_3^{(\alpha,\beta)}(r) = \int_0^\infty g_3^{(\alpha)}\left(r\tau^{\beta/\alpha}\right) g_1^{(\beta,1)}(\tau)\tau^{3\beta/\alpha}d\tau.$$

 $g_3^{(\alpha)}(r)(lpha \leq 2)$ — трехмерное сферически-симметричное устойчивое распределение, $g_1^{(\beta,1)}(t)(eta \leq 1)$ — одностороннее устойчивое распределение.

7 36-я ВККЛ

Стационарное решение уравнения неклассической диффузии без учета потерь энергии ($\alpha < 2, \ \beta < 1$) $N(\mathbf{r}, R) = S_G R^{-\gamma - \delta/\beta}.$ (5)

Спектр вторичных ядер мягче спектра первичных на величину $R^{-\delta}$. С учетом этого спектр от далеких стационарных источников с учетом вклада вторичных ядер в нашей модели

$$N(\mathbf{r}, R) = S_G R^{-\gamma - \delta/\beta - \delta}.$$
(6)

$$J(\mathbf{r}, t, R) = J_G(\mathbf{r}, R) + J_L(\mathbf{r}, t, R)$$

- J_G вклад многочисленных старых ($t \ge 10^6$ лет) удаленных ($r \ge 1$ кпк) источников, включающий вклад вторичных ядер от ядерных взаимодействий частиц, ускоренных в стационарных источниках, с межзвездной средой;
- J_L компонента, определяемая близкими молодыми источниками (r < 1 кпк, $t < 10^6$ лет).

Спектр космических лучей

$$J(\mathbf{r}, t, R) = \frac{v}{4\pi} \left[N(\mathbf{r}, R) + \frac{S_{\text{im}} R^{-\gamma}}{D(R, \alpha, \beta)^{3/\alpha}} \times \sum_{\substack{r_j \leq 1 \text{ knk} \\ t_j < 10^6 \text{ ner}}} \int_{1}^{t_j} d\tau \tau^{-3\beta/\alpha} \Psi_3^{(\alpha, \beta)} \left(|\mathbf{r}_j| (D(R, \alpha, \beta) \tau^\beta)^{-1/\alpha} \right) \right]$$
(7)
$$\gamma = 2.85, \quad \delta = 0.27, \quad T = 10^4 \text{ ner}$$
$$\alpha = 1.7$$
$$\beta = 0.8 \quad \} \quad \Rightarrow \quad D_0 \approx 1.5 \cdot 10^{-3} \text{nk}^{1.7} / \text{rog}^{0.8}$$
A.A. Lagutin, N.V. Volkov, A.G. Tyumentsev, R.I. Raikin //

EPJ Web of Conferences, 145, 06004 (2017), DOI: 10.1051/epjconf/201714506004

Энергия и жесткость

Энергия на нуклон E_k

$$E_k = \frac{\sqrt{Z^2 \tilde{R}^2 + M^2} - M}{A},$$

где Z, M, A — заряд, масса и атомный номер, соответственно.

Жесткость \tilde{R}

Вдоль оси абсцисс точки расположены для жесткостей \tilde{R} , рассчитанных для потока $\propto R^{-2.7}$, т.о. $_{R_2}$

$$f(\tilde{R}) = \frac{1}{\Delta R} \int_{R_1}^{\tilde{r}} f(R) dR,$$

где $f(R) = R^{-2.7}$.

PRL, **115**, 211101 (2015); NIMPA, **335** (1995) 541–547.

Спектры p, Не и группы ядер Li, Be, B

Спектры групп ядер С, N, O и Ne, Mg, Si

Спектральный индекс

14 36-я ВККЛ

Выводы

- 1. Показано, что в рамках предложенного сценария, элементом которого является предположение об ускорении в галактических источниках всех наблюдаемых в Солнечной системе частиц с жесткостями $30 < R < 5 \cdot 10^7$ ГВ, достигается самосогласованное объяснение основных особенностей энергетических спектров первичных и вторичных ядер космических лучей.
- 2. Установлено, что наблюдаемое в области $R \sim 30 \ {\sf FB} \div 3 \ {\sf TB}$ изменение показателя спектров ядер КЛ обусловлено переходом от, в основном, вкладов многочисленных далеких источников, включая и вклады ядерных взаимодействий этих частиц при их распространении в межзвездной среде, к вкладам, главным образом, близких источников, наблюдаемые спектры которых более жесткие.
- 3. В рамках предложенного сценария в области $R\gtrsim 10^6~{\rm FB}$ должна наблюдаться спектральная универсальность, т.е. практически одинаковая зависимость показателей наблюдаемых спектров ядер от жесткости.

Приложение

Источники экспериментальных данных

→ AMS-02 (2015–2020) ⊢ CALET (2019) → DAMPE (2019) \mapsto NUCLEON (2019) \leftarrow CREAM-III (2017) \mapsto BESS-PolarII (2016) ⊢▲ PAMELA (2013,2014) ⊢ ATIC-2 (2009) ← CREAM-II (2009) \mapsto TRACER2003 (2008)

- \longmapsto Ichimura et al. (1993)
- \longmapsto CRN-Spacelab 2 (1990)
- ⊢● → HEAO3-C2 (1990)
- \vdash Orth et al. (1978)
- \vdash Juliusson (1974)
- $\vdash \Box \vdash IceCube/IceTop (2019)$
- $\vdash \blacksquare \vdash \mathsf{KASKADE}\text{-}\mathsf{Grande} (2013)$
- \mapsto KASKADE (2005)

Спектральный индекс Ne, Mg, Si

18 36-я ВККЛ