

Физический факультет Московского государственного университета имени М.В.Ломоносова

О возможности краткосрочного прогноза солнечных протонных событий по величине флюенса рентгеновского излучения во время солнечной вспышки

А.М. Коновалихин¹, Н.А. Власова², В.В. Калегаев^{1, 2}

1. Физический факультет Московского государственного университета имени М.В. Ломоносова

2. Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына Московского государственного университета имени М.В. Ломоносова

г. Москва, Россия

ВККЛ-2024 01-05 июля 2024

Актуальность работы

Солнце – источник радиационной опасности. В результате солнечных вспышек и КВМ на космических аппаратах и, иногда, на наземных установках (события GLE) регистрируются мощные потоки солнечных энергичных частиц, которые могут являться возможным предвестником геомагнитных бурь и создавать угрозу:

- Экипажам и технике космических миссий;
- Экипажам и технике высоколетящих самолётов;
- Дальней высокочастотной радиосвязи.

Поэтому актуальным является краткосрочный прогноз солнечных протонных событий, основанный на экспериментальных данных по рентгеновскому излучению Солнца во время вспышек, которое регистрируется на геостационарных спутниках серии GOES через ~8 минут после вспышки.

Обозначение (шкала)	Наименование	Уровень потока частиц с E>10 МэВ, pfu=частиц/(см ² ·с·ср)	Средняя частота наблюдения в течении 1 цикла (11 лет)
S5	экстремальный (Extreme)	J≥10 ⁵ pfu	<1
S4	серьезный (Severe)	J≥10 ⁴ pfu	3
S3	сильный (Strong)	J≥10 ³ pfu	10
S2	умеренный (Moderate)	J≥10 ² pfu	25
S1	незначительный (Minor)	J≥10 ¹ pfu	50

Классификация уровней радиационной опасности от СПС по версии SPACE WEATHER PREDICTION CENTER.

Представлены результаты исследования по поиску связи между флюенсом рентгеновского излучения Солнца во время солнечной вспышки в диапазоне длин волн 0,1–0,8 нм и солнечным протонным событием в 24 цикле солнечной активности.

Соотношение между флюенсом потока рентегеновского излучения 0,1-0,8 нм во время солнечной вспышки, ассоциированной с СПС, и рентгеновским классом этой вспышки

Соотношение между потоком протонов с энергией ≥10 МэВ по данным GOES и флюенсом потока рентегеновского излучения 0,1-0,8 нм во время солнечной вспышки, ассоциированной с этим СПС, и рентгеновским классом вспышки для всех СПС 24 цикла СА.

Соотношение между потоком протонов с энергией ≥10 МэВ в первом максимуме СПС (24 цикл СА) и флюенсом потока рентегеновского излучения 0,1-0,8 нм во время солнечной вспышки, ассоциированной с этим СПС, и рентгеновским классом вспышки.

Отобраны вспышки М и Х класса, расположенные в диапазоне гелиодолгот W35-W80.

Соотношение между флюенсом потока рентегеновского излучения 0,1-0,8 нм во время солнечной вспышки и рентгеновским классом этой вспышки.

Приведены как **ассоциированные с СПС** вспышки, так и те, которые **не были связаны с возрастанием потока протонов** в ОКП.

Отобраны вспышки М и Х класса, расположенные в диапазоне гелиодолгот W35-W80 в том же временном интервале.

Связь между флюенсом потока рентгеновского излучения 0,1 - 0,8 нм и рентгеновским классом вспышки (амплитуда рентгеновского всплеска на 1 а.е., Вт*м^-2)

Распределение по рентгеновскому классу и флюенсу потока рентгеновского излучения количества вспышек, ассоциированных с СПС и тех, которые не привели к возрастанию потока протонов в ОКП.

Распределение по длительности количества вспышек, ассоциированных с СПС и тех, которые не привели к возрастанию потока протонов в ОКП. Соотношение между флюенсом потока рентгеновского излучения 0,1-0,8 нм во время солнечной вспышки и длительностью вспышки

Связь между флюенсом потока рентгеновского излучения 0,1 - 0,8 нм и длительностью вспышки

Рентгеновское излучение и поток протонов по данным ИСЗ серии GOES 2013-12-27 – 2014-01-07

Самые мощные вспышки и соответствующие им КВМ 2013-12-27 – 2014-01-07

Вспышки				КВМ					
Дата	UT	Координаты	Балл	AO	Дата	UT	V,	Раствор,	PA,
							км/с	град.	град.
<mark>2013/12/28</mark>	<mark>17:53:00</mark>	<mark>S17E07</mark>	<mark>C9.3</mark>	<mark>1936</mark>	<mark>2013/12/28</mark>	<mark>17:36:06</mark>	<mark>1118</mark>	<mark>360</mark>	<mark>Halo</mark>
2013/12/29	07:49:00	S16W01	M3.1	1936					
2013/12/31	21:45:00	S15W36	M6.4	1936	2013/12/31	22:12:00	0248	016	195
2014/01/01	18:40:00	S16W45	M9.9	1936	2014/01/01	19:48:06	326	113	245
<mark>2014/01/04</mark>	<mark>18:47:00</mark>	S11E33	<mark>M4.0</mark>	<mark>1944</mark>	<mark>2014/01/04</mark>	<mark>21:22:38</mark>	<mark>977</mark>	<mark>360</mark>	<mark>Halo</mark>
2014/01/04	22:09:00	S14W89	M2.0	1936					
2014/01/04	22:12:00	S14W89	M1.9	1936	2014/01/04	23:12:05	567	201	273
<mark>2014/01/06</mark>	<mark>07:30:00</mark>	<mark>S15W89</mark>	C2.1	<mark>1936</mark>	2014/01/06	<mark>08:00:05</mark>	<mark>1402</mark>	<mark>360</mark>	<mark>Halo</mark>

Рентгеновское излучение и поток протонов по данным ИСЗ серии GOES 2024-02-17 – 2024-02-29

Самые мощные вспышки и соответствующие им КВМ 2024-02-17 – 2024-02-29

Вспышки				КВМ					
Дата	UT	Координаты	Балл	AO	Дата	UT	V,	Раствор,	PA,
							км/с	град.	град.
2024/02/21	22:52:00	N17E39	X1.8	3590	2024/02/22	00:24	0976	062	138
2024/02/22	06:17:00	N17E35	X1.7	3590	2024/02/22	05:12	0496	008	169
2024/02/22	20:29:00	N18E27	M4.8	3590					
2024/02/22	22:08:00	N17E27	X6.4	3590	2024/02/22	22:36	0265	008	087
2024/02/23	13:12:00	N18E18	M1.0	3590	2024/02/23	12:48	0306	024	021
					2024/02/23	13:48	0188	066	038
2024/02/23	15:41:00	N18E18	M1.5	3590	2024/02/23	14:24	0199	016	265
2024/02/23	16:12:00	N17E15	M1.0	3590	2024/02/23	16:24	0133	006	044
2024/02/23	17:26:00	N17E15	M2.7	3590					
2024/02/24	06:21:00	N18E08	M4.5	3590	2024/02/24	07:24	0144	036	257
2024/02/24	10:32:00	N15E08	M2.2	3590					
2024/02/24	11:03:00	N18E05	M3.6	3590	2024/02/24	13:36	0180	028	271
2024/02/24	11:54:00	N16E10	M1.0	3590					
2024/02/25	16:47:00	N14W07	M2.1	3590	2024/02/25	16:00	0273	010	278
2024/02/28	16:37:00	N19W58	M1.3	3590	2024/02/28	17:24	0532	096	299

Фактически показано существование вблизи максимума активной фазы 19–24 циклов достаточно длительных интервалов времени, когда число солнечных событий меньше, суммарные и максимальные флюенсы протонов в них существенно, на ≥1–2 порядка величины, ниже.

М. В. Подзолко, В. В. Калегаев, К. А. Устинов Характеристики солнечных протонных событий в периоды инверсии магнитного поля солнца за последние 6 солнечных циклов // ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ, 2023, том 87, No 7, с. 1018– 1022. DOI: 10.31857/S0367676523701806, EDN: OSLIEH

Временные ряды сглаженных чисел Вольфа W, вертикальных компонент северного и южного полярного поля Солнца и флюенсов F протонов с E > 30 МэВ в СПС в 19–24 циклах солнечной активности. Найденные периоды понижения числа и флюенсов СПС во время инверсии поля показаны горизонтальными линиями на нижнем графике.

Заключение

- 1. Не найдено прямой зависимости между потоком протонов с энергией ≥10 МэВ и флюенсом рентгеновского излучения 0,1-0,8 нм во время вспышки для всех СПС 24 цикла СА.
- 2. Для вспышек М и Х классов, расположенных в диапазоне гелиодолгот W35-W80, не найдено прямой зависимости между потоком протонов и флюенсом рентгеновского излучения.
- 3. Результаты сравнительного анализа вспышек М и Х классов, расположенных в диапазоне гелиодолгот W35-W80, ассоциированных и неассоциированных с СПС, показали, что в среднем ассоциированные с СПС вспышки имеют бо́льшие класс, флюенс рентгеновского излучения и длительность.
- 4. Найдено, что существуют вспышки, имеющие большой рентгеновский класс и флюенс и расположенные в оптимальном диапазоне гелиодолгот, но не приводящие к СПС.
- 5. В периоды 27.12.2013–07.01.2014 и 17-29.02.2024 (максимумы 24 и 25 циклов СА) наблюдались мощные солнечные вспышки, сопровождаемые слабыми КВМ, от которых не было зарегистрировано солнечных протонов.
- 6. Наблюдение мощных вспышек со слабыми КВМ, от которых не регистрируются солнечные частицы, в максимумах 24 и 25 циклов СА дополняет результат статьи Подзолко и др. тем, что показано, что в эти периоды происходят мощные солнечные вспышки, не приводящие к СПС.

Благодарю за внимание

Заключение

1. Рассмотрены вспышки, ассоциированные с СПС 24 цикла. Получено, что прямой связи между потоком протонов с энергией ≥10 МэВ в первом максимуме и флюенсом рентгеновского излучения 0,1-0,8 нм во время вспышки, связанной с этим СПС нет, так же как и между потоком протонов и рентгеновским классом этой вспышки.

2. Из рассмотренных выше вспышек отобраны вспышки М и Х класса, расположенные в диапазоне гелиодолгот W35-W80. Получен аналогичный результат.

3. Рассмотрены вспышки М и Х класса, расположенные в диапазоне гелиодолгот W35-W80, которые не были связаны с возрастанием потока протонов в ОКП. Показано, что в среднем ассоциированные с СПС вспышки имеют большие класс, флюенс рентгеновского излучения и длительность.

4. Замечено, что, несмотря на это, существуют вспышки, имеющие большой рентгеновский класс и флюенс, расположенные в оптимальном диапазоне гелиодолгот, но не приводящие к СПС.

5. Проанализированы периоды в максимумах солнечной активности, получено, что в них имелись мощные вспышки, но слабые КВМ, при этом СПС не было.

6. Отмечено, что данный результат согласуется с результатом статьи Подзолко и др. и дополняет его: в максимумах солнечной активности 24 и 25 циклов при отсутствии сильных СПС наблюдаются мощные вспышки, но слабые КВМ.

2024-02-16 00:00:00 (UTC)

2014-01-01 00:00:00 (UTC)

Please acknowledge Pl, J. Luhmann at UCB/SSL and CD4Web when using these data. Generated by CD4Web on Wed Feb 14 13:25:50 2024

Please acknowledge Pl, J. Luhmann at UCB/SSL and CD4Web when using these data. Generated by CD4Web on Wed Feb 14 13:25:50 2024

SDO AIA Fe XII (193 Å) 1-Jan-2014 20:33:30.840

Связь между флюенсом потока рентегеновского излучения 0,1-0,8 нм во время солнечной вспышки и рентгеновским классом этой вспышки.

Приведены как **ассоциированные с СПС** вспышки, так и те, которые **не были связаны с возрастанием потока протонов** в ОКП.

Отобраны вспышки М и Х класса, расположенные в диапазоне гелиодолгот W35-W80.

На основе анализа данных спутниковых измерений потоков протонов СКЛ и наблюдений Солнца в 19– 24 солнечных циклах найдены интервалы времени длительностью 8–12 месяцев, на которые приходится инверсия магнитного поля Солнца, и во время которых наблюдается понижение числа и флюенсов СПС. В эти периоды времени число солнечных событий меньше, суммарные и максимальные флюенсы протонов в них существенно, на ≥1–2 порядка величины, ниже, а энергетические спектры в диапазоне энергий от >1 до >60 МэВ – мягче, чем за равные по длительности периоды до и после этого.

Фактически показано существование вблизи максимума активной фазы 19–24 циклов достаточно длительных интервалов времени, когда происходит значительное понижение флюенсов протонов СКЛ.

В продолжение данного исследования предполагается проанализировать в т.ч. частоту и мощность солнечных вспышек и характеристики активных областей в периоды инверсии.

М. В. Подзолко, В. В. Калегаев, К. А. Устинов Характеристики солнечных протонных событий в периоды инверсии магнитного поля солнца за последние 6 солнечных циклов // ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ, 2023, том 87, No 7, с. 1018–1022. DOI: 10.31857/S0367676523701806, EDN: OSLIEH

Временные ряды сглаженных чисел Вольфа W, вертикальных компонент северного и южного полярного поля Солнца BN,S и флюенсов F протонов с E > 30 МэВ в СПС в 19–24 циклах солнечной активности. Для 19–20 циклов показаны периоды инверсии по ранним наблюдениям полярного поля (MF), числа полярных факелов (PF) и положения волокон (QP). Найденные периоды понижения числа и флюенсов СПС во время инверсии поля показаны горизонтальными линиями на нижнем графике.

Рентгеновское излучение и поток протонов по данным ИСЗ серии GOES 2024-02-17 – 2024-02-29 _{X1.8; X1.7;}

Введение

Представлены результаты исследования по поиску связи между флюенсом рентгеновского излучения Солнца во время солнечной вспышки в диапазоне длин волн 0,1–0,8 нм и солнечным протонным событием. Рассчитаны флюенсы рентгеновского излучения Солнца во время солнечных вспышек, произошедших в 24 цикле солнечной активности, с которыми ассоциируются солнечные протонные события. В качества источников данных по параметрам солнечных вспышек и солнечных протонных событий взяты интерактивный каталог солнечных протонных событий 24 цикла солнечной активности на сайте центра данных оперативного космического мониторинга (ЦДОКМ) НИИЯФ МГУ [https://swx.sinp.msu.ru/] и база данных Solar Demon [https://www.sidc.be/solardemon/].