

Избранные результаты Обсерватории Telescope Array

38-ая Всероссийская конференция по космическим лучам

Рубцов Г.И. (ИЯИ РАН), 5 июля 2024 г.

Москва, ФИАН

photo by Oleg Kalashev

Telescope Array observatory

2

• The largest cosmic ray observatory in the northern hemisphere

Telescope Array

- Delta, Utah, USA. ~1400 m above sea level
- Collaborators from HiRes, AGASA and other institutes

Scientific Goals

- Origin and nature of the ultra-high energy cosmic rays:
 - spectrum, composition, anisotropy
- Physics of high energy hadronic interactions
- Multi-messenger and interdisciplinary studies
 - photons, neutrinos, dark matters
 - thunderstorms, terrestrial gamma-ray flash
 - meteoroids
- Development of the next-generation experiments

Telescope Array Collaboration

R.U. Abbasi¹, Y. Abe², T. Abu-Zavvad^{1,3}, M. Allen³, E. Barcikowski³, J.W. Belz³, D.R. Bergman³, S.A. Blake³, I. Buckland³, W. Campbell³, B.C. Cheon⁴, M. Chikawa⁵ K. Endo⁶, A. Fedvnitch^{5,7}, T. Fujii^{6,8}, K. Fujisue⁵, K. Fujita⁵, M. Fukushima⁵, G. Furlich³, Z. Gerber³, N. Globus^{*9}, W. Hanlon³, N. Hayashida¹⁰, H. He⁹, R. Hibi², K. Hibino¹⁰ R. Higuchi⁹, K. Honda¹¹, D. Ikeda¹⁰, N. Inoue¹², T. Ishii¹¹, H. Ito⁹, D. Ivanov³, H.M. Jeong¹³, S. Jeong¹³, C.C.H. Jui³, K. Kadota¹⁴, F. Kakimoto¹⁰, O. Kalashev¹⁵. K. Kasahara¹⁶, S. Kasami¹⁷, Y. Kawachi⁶, S. Kawakami⁶, K. Kawata⁵, I. Kharuk¹⁵, E. Kido⁹, H.B. Kim⁴, J.H. Kim³, J.H. Kim^{†3}, S.W. Kim¹³, Y. Kimura⁶, R. Kobo⁶, I. Komae⁶, K. Komori¹⁷, Y. Kusumori¹⁷, M. Kuznetsov^{15,18}, Y.J. Kwon¹⁹, K.H. Lee⁴, M.J. Lee¹³, B. Lubsandorzhiev¹⁵, J.P. Lundquist^{3,20}, T. Matsuyama⁶, J.A. Matthews³ J.N. Matthews³, R. Mayta⁶, K. Miyashita², K. Mizuno², M. Mori¹⁷, M. Murakami¹⁷ I. Myers³, S. Nagataki⁹, M. Nakahara⁶, K. Nakai⁶, T. Nakamura²¹, E. Nishio¹⁷, T. Nonaka⁵, S. Ogio⁵, H. Ohoka⁵, N. Okazaki⁵, Y. Oku¹⁷, T. Okuda²², Y. Omura⁶, M. Onishi⁵, M. Ono⁹, A. Oshima²³, H. Oshima⁵, S. Ozawa²⁴, I.H. Park¹³, K.Y. Park⁴ M. Potts³, M. Przybylak^{‡25}, M.S. Pshirkov^{15,26}, J. Remington³, D.C. Rodriguez³, C. Rott^{3,13}, G.I. Rubtsov¹⁵, D. Ryu²⁷, H. Sagawa⁵, R. Saito², N. Sakaki⁵, T. Sako⁵ S. Sakurai¹⁷, D. Sato², S. Sato¹⁷, K. Sekino⁵, P.D. Shah³, N. Shibata¹⁷, T. Shibata⁵ J. Shikita⁶, H. Shimodaira⁵, B.K. Shin²⁷, H.S. Shin^{6,8}, K. Shinozaki²⁵, D. Shinto¹⁷. J.D. Smith³, P. Sokolsky³, B.T. Stokes³, T.A. Stroman³, Y. Takagi¹⁷, K. Takahashi⁵, M. Takamura²⁸, M. Takeda⁵, R. Takeishi⁵, A. Taketa²⁹, M. Takita⁵, Y. Tameda¹⁷. K. Tanaka³⁰, M. Tanaka³¹, S.B. Thomas³, G.B. Thomson³, P. Tinyakov^{15,18}, I. Tkachev¹⁵ H. Tokuno³², T. Tomida², S. Troitsky¹⁵, Y. Tsunesada^{6,8}, S. Udo¹⁰, E. Urban³³. I.A. Vaiman¹⁵, M. Vrábel²⁵, D. Warren⁹, T. Wong³, K. Yamazaki²³, K. Yashiro F. Yoshida¹⁷, Y. Zhezher^{5,15}, Z. Zundel³, and J. Zvirzdin³

¹Department of Physics, Loyola University Chicago, Chicago, Illinois 60660, USA ²Academic Assembly School of Science and Technology Institute of Engineering, Shinshu University, Nagano, Nagano 380-8554. Japan ³High Energy Astroph usics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112-0830. USA Physics and The Research Institute of Natural Science, Hanyana University, Seonadona-au, Seoul 426-791. Korea mic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582, Japan Science, Osaka Metropolitan University, Sugimoto, Sumiyoshi, Osaka 558-8585, Japan ⁷Institute of Physics, Academia Sinica, Taipei City 115201, Taiwan ⁸ Nambu Yoichiro Institute of Theoretical and Experimental Physics, Osaka Metropolitan University, Suaimoto, Sumiyoshi, Osaka 558-8585, Japan usical Big Bang Laboratory, RIKEN, Wako, Saitama 351-0198, Japan ¹⁰ Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa 221-8686, Japan ¹¹ Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Yamanashi 400-8511. Japan ¹² The Graduate School of Science and Engineering, Saitama University, Saitama, Saitama 338-8570, Japan ¹³ Department of Physics. Sungkyunkwan University, Jang-an-gu, Suwon 16419, Korea ¹⁴Department of Physics, Tokyo City University, Setagaya-ku, Tokyo 158-8557, Japan ¹⁵Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia ¹⁶ Faculty of Systems Engineering and Science, Shibaura Institute of Technology, Minato-ku, Tokyo 337-8570, Japan ¹⁷ Graduate School of Engineering, Osaka Electro-Communication University, Neugagwa-shi, Osaka 572-8530, Japan ¹⁸ Service de Physique Théorique, Université Libre de Bruxelles, Brussels 1050, Belgium ¹⁹ Department of Physics, Yonsei University, Seodaemun-gu, Seoul 120-749, Korea

²⁰ Center for Astrophysics and Cosmology, University of Nova Gorica, Nova Gorica 5297, Slovenia
 ²¹ Faculty of Science, Kochi University, Kochi, Kochi 780-8520, Japan
 ²² Department of Physical Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
 ²³ College of Science and Engineering, Chubu University, Kasugai, Aichi 487-8501, Japan
 ²⁴ Quantum ICT Advanced Development Genter, National Institute for Information and Communications Technology, Koganei, Tokyo 184-8795, Japan
 ²⁵ Astrophysics Division, National Centre for Nuclear Research, Warsaw 02-093, Poland

²⁶ Sternberg Astronomical Institute, Moscow M.V. Lomonosov State University, Moscow 119991, Russia
 ²⁷ Department of Physics, School of Natural Sciences, Ulsan National Institute of Science and Technology, UNIST-gil, Ulsan

689-798, Korea

²⁸ Department of Physics, Tokyo University of Science, Noda, Chiba 162-8601, Japan
 ²⁹ Earthquake Research Institute, University of Tokyo, Bunkyo-ku, Tokyo 277-8582, Japan
 ³⁰ Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Hiroshima 731-3194, Japan
 ³¹ Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki 305-0801, Japan
 ³² Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8550, Japan
 ³³ CEICO, Institute of Physics, Czech Academy of Sciences, Prague 182 21, Czech Republic

145 members, 33 institutes, 8 countries

Telescope Array observatory

TA Low Energy extension (TALE)

- Low energy extension of TA sensitivity down to ~10¹⁵ eV
- Hybrid measurement
- 10 FDs observing higher elevation of 30°–59°
- 80 SDs with 400–600 m spacing
- Precise measurement of the composition
 - FDs installed in Nov. 2012
 - Operation since Sep. 2013

TAx4 project, ~3000 km²

- TA4 motivation
 - greatly increase the data sample at the highest energies in order to identify UHECR sources

• SDs

- 500 new SDs at 2.08 km spacing
- 257 deployed thus far and operational
- FDs
 - 12 telescopes deployed and operational
 - 4 North and 8 South

TA surface detector event reconstruction

TA hybrid and stereo event reconstruction

From 10¹⁵ eV to more than 10²⁰ eV within one observatory

J. Kim, ICRC'2023

Greisen-Zatsepin-Kuzmin cutoff

11

END TO THE COSMIC-RAY SPECTRUM?

Kenneth Greisen

Cornell University, Ithaca, New York (Received 1 April 1966)

The primary cosmic-ray spectrum has been measured up to an energy of 10^{20} eV ,¹ and several groups have described projects under development or in mind² to investigate the spectrum further, into the energy range $10^{21}-10^{22} \text{ eV}$. This note predicts that above 10^{20} eV the primary spectrum will steepen abruptly, and the experiments in preparation will at last observe it to have a cosmologically meaningful termination. 1966 о верхней границе спектра космических лучей

Г.Т.Зацелин, В.А.Кузьмин

В недавних измерениях [1,2] обнаружено мощное изотропное тепловое излучение Вселенной, обладающее, по-видимому, распределением Планка с температурой Т $\approx 3^{\circ}$ К. Интенсивность этого излучения такова ($N \approx 550$ фотонов/см³, kT $\approx 2,5.10^{-4}$ эв), что возникают специфические эффекты при прохождении через него космических лучей сверхвысоких энергий, в частности обрезание спектра космических лучей в области 10²⁰ эв.

$$p + \gamma_{2.7K} \rightarrow \Delta^+ \rightarrow n + \pi^+$$

 $E \gtrsim 10^{19.7} \text{ eV} \qquad \rightarrow p + \pi^0$

Heavy nuclei photodisintegrate at the same energies

Greisen-Zatsepin-Kuzmin cutoff

M N N

12

END TO THE COSMIC-RAY SPECTRUM?

Kenneth Greisen

Cornell University, Ithaca, New York (Received 1 April 1966)

The primary cosmic-ray spectrum has been measured up to an energy of 10^{20} eV ,¹ and several groups have described projects under development or in mind² to investigate the spectrum further, into the energy range $10^{21}-10^{22} \text{ eV}$. This note predicts that above 10^{20} eV the primary spectrum will steepen abruptly, and the experiments in preparation will at last observe it to have a cosmologically meaningful termination.

The author expresses thanks for the hospitality of the Physics Department of the University of Utah, where this Letter was written.

$$p + \gamma_{2.7K} \rightarrow \Delta^+ \rightarrow n + \pi^+$$

 $\gtrsim 10^{19.7} \text{ eV} \qquad \rightarrow p + \pi^0$

1966 о верхней границе спектра космических дучей

Г.Т.Зацелин, В.А.Кузьмин

В недавних измерениях [1,2] обнаружено мощное изотропное тепловое излучение Вселенной, обладащее, по-видимому, распределением Планка с температурой Т $\approx 3^{\circ}$ К. Интенсивность этого излучения такова ($N \approx 550$ фотонов/см³, kT $\approx 2,5.10^{-4}$ эв), что возникают специфические эффекты при прохождении через него космических лучей сверхвысоких энергий, в частности обрезание спектра космических лучей в области 10²⁰ эв.

Heavy nuclei photodisintegrate at the same energies

The problem of the origin of cosmic rays

Как нам представляется, к 2001 году или во всяком случае к 2012 году можно ожидать выяснения почти всех вопросов, сформулированных в конце предыдущего параграфа.

В.Л. Гинзбург, Астрофизика космических лучей, 1990 г.

(Примечание: речь об источниках космических лучей)

Observation of GZK cut-off by HiRes experiment

First observation at 5σ confidence level!

Monocular: Quarks'06; PRL 100 (2008) Stereo: Astropart. Phys. 32 (2010)

er (R)

GZK effect confirmation by Auger and TA observatories

Telescope Array Collaboration Astrophys.J.Lett. 768 (2013) L1 5.5σ confidence level

Pierre Auger Collaboration PRL 101 (2008) Phys. Lett. B 685 (2010)

Auger and TA spectrum results

Auger and TA spectrum Working group Y. Tsunesada, ICRC'2023 **GZK horizons**

A. Olinto et. al., White paper on UHECR (2009)

Is charged particle astronomy possible?

18

- Deflection of 60 EeV protons in the galactic magnetic field is about 2°-6°
- The highest energy cosmic rays should trace back to their sources
- Cosmogenic photons and neutrinos are produced in interactions with CMB and EBL

Berezinsky, Zatsepin, Phys. Lett B 28, 423 (1969)

Hillas plot: possible UHECR sources

Ptytsina, Troitsky, UFN 53 (2010) 691

Observed UHECR sky

Joint Auger + TA data

- Flux excess is overved in Centaurus A are at South and Ursa Major constellation and Perseus-Pisces Supercluster regions at North
- No individual sources are observed L. Caccianiga, ICRC'2023

Telescope Array hot spot

Li-Ma Significance Map with $E \ge 57 \text{ EeV}$

- 205 events (14-year TA SD data)
- Max local sig.: **5.1**σ at (144.0°, 40.5°)

Obs. : 44 events N_{bg} : 16.9 events -160% excess

- Post-trial probability:

 $P(S_{MC} > 5.1\sigma) = 7.4 \times 10^{-4} \rightarrow 3.2\sigma$

Telescope Array hot spot

Independent Dataset Analysis

TA-Auger: correlations with starburst galaxies

catalogue	$E_{\min}^{(Auger)}$	$E_{\min}^{(TA)}$	ψ [deg]	f [%]	TS	significance
all galaxies	40 EeV	51 EeV	29^{+11}_{-12}	41^{+29}_{-18}	14.3	$2.7\sigma_{\text{global}}$
starburst	38 EeV	49 EeV	$15.1^{+4.6}_{-3.0}$	$12.1^{+4.5}_{-3.1}$	31.1	$4.6\sigma_{global}$

Sources model Composition	SBG only	SBG only (EGMF)	SBG-LSS	LSS only
Intermediate nuclei	> 20	> 20	> 20	> 20
Light nuclei + iron	2σ	1σ	1σ	1σ

Table 1: Summary of degree of compatibility between given UHECR flux models and the data.

L. Caccianiga ICRC'2023

M. Kuznetsov ICRC'2023

23

Why don't we see the sources?

Disappointing model

•

R. Aloisio, V. Berezinsky, A. Gazizov Astropart. Phys. 34 (2011) 620

No cosmogenic photons, no cosmogenic neutrinos

• We will not see the sources

Why don't we see the sources?

Disappointing model

•

R. Aloisio, V. Berezinsky, A. Gazizov Astropart. Phys. 34 (2011) 620

No cosmogenic photons, no cosmogenic neutrinos

- We will not see the sources
- Is this the case? The primary composition is a key

26

Composition at lower energies

• Five-year TALE hybrid data set (Nov. 2017–Mar. 2023)

- A break in the elongation rate at energy $10^{17.10\pm0.03}$ eV (2nd knee).

- Light-heavy-light pattern in $10^{16.5}$ – $10^{18.5}$ eV.

Peter's cycle scenario is supported What do we have at the highest energies? K.Fujita, ICRC'23 (see also the talk by N.Petrov)

Primary composition

Machine learning technique based on Boosted decision trees

Phys.Rev.D 99 (2019) 2

Mass composition from anisotropy of the arrival directions

Heavy composition at the highest energies (E>100 EeV)!

Telescope Array Collaboration, accepted to PRD and PRL arXiv:2406.19286, arXiv:2406.19287

Search for primary photons

I. Kharuk, ICRC'23

Disappointing model?

- No cosmogenic photons, no cosmogenic neutrinos
- What we expect:
 - Dipolar and quadrupolar anisotropy
 - Astronomy with the highest energy particles

Search for dipole and quadrupole

di Matteo, Tinyakov, MNRAS 476 (2018) 715

 If the source distribution tracks the overall matter distribution, the dipole and quadrupole anisotropy should be observable

The dipole discovery by Auger

LARGE-SCALE COSMIC-RAY ANISOTROPIES ABOVE 4 EEV

Pierre Auger collaboration, ApJ 868 (2018) 4

- The dipole has been discovered at 5σ confidence level at E>8 EeV
- Consistent with the isotropic sources model with the source density ρ=10⁻⁴ Mpc⁻³

Dipole and quadrupole results by Auger+TA joint working group

Heavier composition is preferred! Alternative: stronger EG magnetic fields. di Matteo, Tinyakov, MNRAS 476 (2018) 715 L. Caccianiga, ICRC'2023

Declination Dependence in the TA SD Spectrum

E³J [m⁻² s⁻¹ sr¹ eV²]

18.8

19

19.2

19.4

19.6

log (E/eV)

19.8

20

20.2

20.4

- Differences in the cutoff energies
 - log(E/eV)=**19.84 ±0.02** for higher declination (24.8°-90°)
 - log(E/eV)=19.65 ±0.03

for lower declination (-16°-24.8°)

• The global significance of the difference is estimated to be 4.4σ .

An extreme Energy Event registered by TA SD

- Observed with TA SD at 10:35:56 on 27 May 2021 (UTC). No FD observation
 - Science 382, 903–907 (2023).
- $E = 244 \pm 29(\text{stat.}) \pm 51(\text{syst.}) \text{ EeV}$, zenith angle $\theta = 38.6^{\circ}$

Observation of the event with extremely high energy

Telescope Array Collaboration, Science 382, 903–907 (2023). M. Kuznetsov, JCAP 04 (2024) 042

See the talk by M. Kuznetsov (this conference)

 $E = 2.44 \times 10^{20} \Rightarrow B$

- Event is coming from cosmic void
- Not a gamma-ray
- Primary particle should • be a heavy nuclei
 - The source is closer than 5 Mpc

TA proton-air cross-section

TA Collaboration, Phys. Rev. D 102 (2020) 062004

Muon content analysis

- 9 experiments: Data taken over large parameter space under very different experimental conditions!
- <u>Muon content is expressed in terms of *z*-scale:</u>

$$z = \frac{\ln(N_{\mu}^{\text{det}}) - \ln(N_{\mu,p}^{\text{det}})}{\ln(N_{\mu,Fe}^{\text{det}}) - \ln(N_{\mu,p}^{\text{det}})} \quad , \quad z = 0: \text{ proton}, \ z = 1: \text{ iron}$$

- N_{μ}^{det} : muon content measured in the detector
- $N_{\mu,p}^{\text{det}}, N_{\mu,Fe}^{\text{det}}$: muon content in simulated EAS (proton/iron) at the detector

Muon excess problem

Arteaga-Velázquez, ICRC'2023

Conclusions

- Telescope Array Observatory has the largest UHECR statistics at the Northern Hemisphere
- An extremely high energy event (E = 2.44x10²⁰ eV) have been observed at TA
- There are several evidences of cosmic ray composition hardening at the highest energies
- The charged particle astronomy is possible for the highest energy events. The nearest source is not far away
- An enhanced statistics of TAx4 is crucial for determining the origin of cosmic rays

Thank you!

This work is supported in the framework of the State project ``Science'' by the Ministry of Science and Higher Education of the Russian Federation under the contract 075-15-2024-541.

Observation of Terrestrial Gamma-Ray Flashes with TA SD

- Broadband Interferometer (INTF):
 - Three 20-80 MHz flatplate
 antennas
 - 2D high-resolution reconstruction of lightning sources
- Fast Sferic Sensor (FA):
 - Detects electric field change
 - Identifies substructure: initial breakdown pulses (IBPs)
- Clearly defined TGF onset during the flash's strongest initial breakdown pulse
 TA Collaboration, arXiv:2205.05115

Variation of Level-0 trigger rate during Thunderstorms

TA Collaboration, Phys. Rev. D 105, 062002

- Level-0 trigger rate is monitored at 10 min resolution at each SD station.
- Thunderstorm detected by NLDN changes the trigger rate.
- The result may be interpreted by using EFIELD option of CORSIKA.
- Intensity increase or deficit depends on electric field type (intracloud or cloud to ground) and thunderstorm polarity