Малахов В.В.¹, Леонов А.А.^{1,2}, Майоров А.Г.¹, Михайлов В.В.³

¹Национальный исследовательский ядерный университет «МИФИ», Москва, Россия ²Физический институт академии наук (ФИАН) им. Лебедева, Москва, Россия ³Институт передовых технологий г. Шаньдун, Шаньдун, Китай

Метод расчёта анизотропных потоков высокоэнергичных заряженных частиц, захваченных во внутреннем радиационном поясе Земли, в приближении ведущего центра

ОСОБЕННОСТИ ИЗМЕРЕНИЙ ПОТОКОВ ВО ВНУТРЕННЕМ РАДИАЦИОННОМ ПОЯСЕ ЗЕМЛИ

¹Fischer, H. M., Auschrat, V. W., & Wibberenz, G. (1977). Angular distribution and energy spectra of protons of energy $5 \le E \le 50$ MeV at the lower edge of the radiation belt in equatorial latitudes. *Journal of Geophysical Research*, 82(4), 537–547. <u>https://doi.org/10.1029/JA082i004p00537</u>

²A. A. Leonov, V. V. Malakhov, A. G. Mayorov, V. V. Mikhailov, A and V. V. Alekseev, "A method of reconstruction of anisotropic fluxes of geomagnetically trapped particles from in-flight measurements of high precision," *Advances in Space Research*, vol. 74, no. 2, pp. 1030–1038, Jul. 2024, doi: 10.1016/j.asr.2024.04.014.

ИЗМЕРЕНИЕ ПОТОКОВ В УСЛОВИЯХ АНИЗОТРОПИИ

Поток:

 $\frac{N_m}{\Lambda E \times \Lambda t \times I}$

 N_m - Число измеренных событий, ΔE – энергетический интервал, Δt – временной интервал, $N_m/\Delta t = C$ – темп счёта прибора, К – коэффициент пропорциональности между темпом счёта прибора и потоком

Коэффициенты пропорциональности:

Светосила¹:
$$\Gamma = \frac{N_m}{N_{TOT}} \int_{\varphi_1}^{\varphi_2} \int_{\vartheta_1}^{\vartheta_2} S \times F(E, \vartheta, \varphi) \times d\cos^2 \vartheta d\varphi$$

Подход Селезника (эффективные площади)²:

$$J = \frac{N_e}{2\pi \int_{\alpha_{eq,1}}^{\alpha_{eq,2}} \int_{E_1}^{E_2} \int_{L_1}^{L_2} H(E, \alpha(\alpha_{eq}, t), \vartheta_B(t), \varphi_B(t)) \frac{d\alpha}{d\alpha_{eq}} dt dE d\alpha_{eq}}$$

где
$$H(E, \alpha, \vartheta_B, \varphi_B) = \frac{1}{2\pi} \int_0^{2\pi} A(E, \alpha, \beta, \vartheta_B, \varphi_B) \cos \vartheta(\alpha, \beta, \vartheta_B) \sin \alpha d\beta$$

¹Sullivan, J. D. Geometric factor and directional response of single and multi-element particle telescopes. Nucl. Instruments Methods 95, 5–11 (1971).

²Selesnick, R. S. et al. Geomagnetically trapped anomalous cosmic rays. J. Geophys. Res. 100, 9503 (1995).

N_m - число отобранных в моделировании событий, **Геометрический фактор**¹: $G = \frac{N_m}{N_{TOT}} \int_{\varphi_2}^{\varphi_2} \int_{\vartheta_2}^{\vartheta_2} S \times dcos^2 \vartheta d\varphi$ через площадку площадью S, в телесном угле, *N_{TOT}* - полное число промоделированных событий ограниченном азимутальными углами φ_1 и φ_2 и зенитными углами ϑ_1 и ϑ_2 , F – функция, описывающая угловые распределения потоков, Е – энергия частицы *N_e* - число зарегистрированных событий в диапазоне экваториальных питч-углов $\alpha_{eq,1}$ - $\alpha_{eq,2}$, энергий E_1 - E_2 и L-оболочек L_1 - L_2 ; $artheta_B$ и $arphi_B$ зенитный и азимутальный углы вектора магнитного поля В в приборной системе координат в момент

времени t, α – локальный питч-угол, H – эффективная площадь, А – функция отклика прибора.

ПАРЦИАЛЬНЫЙ ГЕОМЕТРИЧЕСКИЙ ФАКТОР

Парциальный геометрический фактор:

$$G_{\Delta\alpha}(E,\vartheta_B,\varphi_B) = \int_{\alpha_k}^{\alpha_{k+1}} \int_0^{2\pi} A(E,\alpha,\beta,\vartheta_B,\varphi_B) \times \cos\vartheta(\alpha,\beta,\vartheta_B,\varphi_B) \times \sin\alpha \,d\alpha \,d\beta = 2\pi \int_{\alpha_k}^{\alpha_{k+1}} H d\alpha$$

ВРЕМЕННЫЕ ВАРИАЦИИ ПАРЦИАЛЬНОГО ГЕОМФАКТОРА

номер шага по времени, $G_{\Delta\alpha,i}$ - ПГФ в соответствующий момент времени, Δt_i - живое время за соответствующий шаг, ΔT – суммарное живое время измерения в Х.

ВАЛИДАЦИЯ И ВЕРИФИКАЦИЯ МЕТОДИКИ

A. A. Leonov, V. V. Malakhov, A. G. Mayorov, V. V. Mikhailov, A and V. V. Alekseev, "A method of reconstruction of anisotropic fluxes of geomagnetically trapped particles from in-flight measurements of high precision," *Advances in Space Research*, vol. 74, no. 2, pp. 1030–1038, Jul. 2024, doi: 10.1016/j.asr.2024.04.014.

Связь параметров гироцентра с измеряемыми локальными величинами

ВККЛ - 2024, Москва, ФИАН, 05 июля 2024

Формы трёхмерных бинов для $\Delta L_{gc} = 1.16-1.17$ Поверхности границ бинов по L_{gc} в пространстве α_{loc} - β_{loc} -Е $\alpha_{eq,gc}$ от 59 до 90° с шагом 1°, Е от 100 МэВ до 2 230 ГэВ с шагом 50 МэВ в пространстве α_{loc} - β_{loc} -Е. 220. 210 1=1.15 200 1.25 190, ပ် 180. 210 \mathbf{n} 200 170 L=1.16 0 190 B_{Joc} 160 <mark>۲, cm² S.</mark>0 180 150、 l=1.20 170 140、 160 -1.18 0.5 130 150 55 50 L=1.22 60 60 65 0.25 70 75 α_{loc} , α_{loc} , EgevGeV 10⁻¹ 10⁰ 90 Sloc 10⁻¹ E,GeV $G_{\Delta E,\Delta L_{gc},\Delta \alpha_{eq,gc}} = \frac{1}{\Delta E} \int_{E_1}^{E_2} G_{\Delta \alpha_{loc} \Delta \beta_{loc}}(E) dE$ где $\Delta E = E_2 - E_1 -$ энергетический бин

ВККЛ - 2024, Москва, ФИАН, 05 июля 2024

СХЕМА РАСЧЁТА ПГФ И ПОТОКОВ ЗАРЯЖЕННЫХ ЧАСТИЦ

ЗАКЛЮЧЕНИЕ

Преимущества методики

- Использование моделирования Монте-Карло изотропного потока
- Использование единого семпла моделирования для любых ориентаций прибора относительно вектора магнитного поля Земли
- Гибкость при выборе биннинга в пространстве геомагнитных координат и времени и как результат применимость к данным с малой статистикой
- Применимость для вычисления анизотропных потоков разной формы, например в приближении ведущего центра

Применимость

- Прибор должен уметь выделять направление прилёта частиц и работать в режиме event-by-event (SAMPEX/MAST, NINA, NINA-2, AMS-01, AMS-02, PAMELA, CSES)
- Необходимо иметь возможность очень точно моделировать отклик прибора на поток исследуемых частиц
- В приближении гироцентра требуется громоздкая процедура описания непрямоугольной трёхмерной локальной сетки

Radiation belt measurements: PAMELA instrument capability

- Detectable proton energy range : ~100 MeV - 750 GeV
- Telescope's opening angle: 15° to 25° Angular resolution: $0.1^{\circ} - 3.0^{\circ}$
- Satellite pointing accuracy: <<0.1° Instrument's dead time: 10 ms
- Geometrical factor: 21.6 cm² sr
- Operation period: Jun 2006 Jan 2016
- Orbit parameters: altitude 350 – 600 km
- inclination 70°
- crossing inner radiation belt: 5-8 times per day

(S11*S12) hit/s

livetime>0.1 sec, no saturation

01.08.2006: count rate of protons in the inner radiation belt

Gathering power for anisotropic flux

Fischer, H. M., Auschrat, V. W., & Wibberenz, G. (1977). Angular distribution and energy spectra of protons of energy $5 \le E \le 50$ MeV at the lower edge of the radiation belt in equatorial latitudes. *Journal of Geophysical Research*, 82(4), 537–547. https://doi.org/10.1029/JA082i004p00537

C= Γ *J where C – count rate, Γ – gathering power, J – intensity of the flux

$$\Gamma = \int_0^{2\pi} \int_{\vartheta_1}^{\vartheta_2} F(E, \vartheta, \varphi) d\cos^2 \vartheta d\varphi \, \mathsf{S}$$

Calculation from MC:

$$\Gamma = \frac{N}{N_{TOT}} \int_0^{2\pi} \int_0^{\frac{\pi}{2}} F(E, \vartheta, \varphi) d\cos^2 \vartheta d\varphi \,\,\mathsf{S}$$

where N_{TOT} number of simulated trajectories, N – number of selected trajectories, S – area of the simulation square.

Sullivan, J. D. Geometric factor and directional response of single and multi-element particle telescopes. *Nucl. Instruments Methods* **95**, 5–11 (1971).

Effective area approach:

 $\mathrm{d}N = A(\vartheta,\varphi)\cos\vartheta Jd\omega$

where A is effective area, θ zenithal angle, ϕ – azimuthal angle, J –flux intensity, $d\omega$ – element of the solid angle

Selesnick, R. S. et al. Geomagnetically trapped anomalous cosmic rays. J. Geophys. Res. 100, 9503 (1995).

Orientation variability in the instrumental reference frame

 $\Gamma = \frac{N}{N_{TOT}(\theta_B(t),\varphi_B(t))} \int_0^{2\pi} \int_0^{\frac{\pi}{2}} F\left(E, \vartheta\left(\alpha,\beta,\theta_B(t),\varphi_B(t)\right), \varphi\left(\alpha,\beta,\theta_B(t),\varphi_B(t)\right)\right) d\cos^2\vartheta\left(\alpha,\beta,\theta_B(t),\varphi_B(t)\right) d\varphi \,\mathsf{S}$

Gathering power for anisotropic flux

ВККЛ - 2024, Москва, ФИАН, 05 июля 2024

1 GV simulation protons after basic selection

Gathering power for 1 GV proton variations

$$J_{\Delta\alpha} = \frac{N}{\overline{\Gamma_{\Delta\alpha}} \Delta T \Delta E} \quad \text{where} \quad \overline{\Gamma_{\Delta\alpha}} = \sum_{i=1}^{n} \Gamma_i^{\Delta\alpha} \frac{\Delta t_i}{\Delta T}$$

where $\overline{\Gamma_{\Delta\alpha}}$ - effective gathering power relative to registration of particles in $\Delta\alpha$ pitch angles range, $\Gamma_i^{\Delta\alpha}$ - gathering power for particles in $\Delta\alpha$ pitch angles range for ith interval, t_i-length of ith interval, $\Delta T = \sum t_i$, N – number of selected events in the experiment in the energy range ΔE during ΔT

Check the method for simulation data

Check the method for experimental data (Galactic isotropic flux)

One pass/day proton directional fluxes distributions

Conclusion

- The robust method to reconstruct directed flux of particle, detected in event by event mode, with known direction of flight in the condition of high anisotropy was proposed.
- The method was tested on the independent sample of simulation data and on PAMELA experimental data for galactic cosmic rays, which are known to be isotropic.
- The reconstructed flux is consistent with the measurements of other instruments.

Approach to reconstruct directional flux of trapped particles: Selesnick, et al., 1995 Geomagnetically trapped anomalous cosmic rays JGR, V. 100, No A6, p. 9503-9518

Number of events N_{iknm} in energy, pitch angle, L-shell, time bins observed by the telescope from the intensity $j(E, \alpha, t, L)$ at the spacecraft:

 $N_{iknm} = \int_{0}^{2\pi} \int_{\alpha_{k}^{eq}}^{\alpha_{k+1}^{eq}} \int_{E_{i}}^{E_{i+1}} \int_{L_{n} < L < L_{n+1}}^{t_{m+1}} A\left(E, \theta\left(\alpha, \beta, \theta_{B}(t), \varphi_{B}(t)\right), \varphi\left(\alpha, \beta, \theta_{B}(t), \varphi_{B}(t)\right)\right) \times cos\theta\left(\alpha, \beta, \theta_{B}(t), \varphi_{B}(t)\right) \times j(E, \alpha^{eq}, t, L) \times sin\alpha \times \frac{d\alpha}{d\alpha^{eq}} \times dt dE d\alpha^{eq} d\beta$ α, β - local pitch and gyrophase angles relative to the local magnetic field; A – telescope response function or effective area; α^{eq} - equator pitch angle; $j(E, \alpha^{eq}, t, L) = j(E, \alpha, t, L)$ from Liouville's theorem.

 $\theta_B(t)$, $\varphi_B(t)$ - spherical angles between telescope axis and the local magnetic field;

 θ , φ - spherical angles relative to the telescope axis;

$$N_{iknm} = j_{iknm} \times \Delta E_i \times \overline{G_{ikm}} \times \Delta t_m = j_{iknm} \times \Delta E_i \times \sum_{\Delta t_j \in \Delta t_m} (G_{ikmj} \times \Delta t_j) / \Delta t_m$$

i – energy bins; *k* - pitch angle bins; *n* – L-shell bins; *m* – time bins;

 $\Delta t_i \in \Delta t_m$ - time interval with constant G_{ikmj}

 j_{iknm} , $[cm^2 \times sr \times MeV \times s]^{-1}$ - intensity.

 G_{ikm} , $cm^2 \times sr$ - average acceptance, that takes into account the contribution of short time intervals j with different orientations of local magnetic field respective instrument axis in each time bin n.

Back up

