

38-Я ВСЕРОССИЙСКАЯ КОНФЕРЕНЦИЯ ПО КОСМИЧЕСКИМ ЛУЧАМ

Характеристики электронно-фотонной и адронной компонент ШАЛ, регистрируемых установками ЭК НЕВОД

Южакова Е.А, Амельчаков М.Б., Богданов А.Г., Chiavassa А., Громушкин Д.М., Жежера С.Ю., Коновалова А.Ю., Нугаева К.Р., Хомчук Е.П., Хохлов С.С., Шульженко И.А. 4 июля 2024 г.

Установка НЕВОД-ШАЛ

- 9 кластеров, 36 детектирующих станций (ДС);
- 144 сцинтилляционных детектора;
- Размер сцинтилляционного детектора: $80 \times 80 \times 4$ см³;
- Площадь **10**⁴ м².

Установка УРАН

- 72 эн-детектора;
- 6 кластеров;
- Сцинтиллятор: ZnS(Ag) + B₂O₃;
- Площадь $\sim 10^3$ м².

Данные для анализа

Моделирование:

CORSIKA с использованием модели адронных взаимодействий QGSJET-II-04 + FLUKA 2020.0.3;

р, $E=10^{14}-10^{17}$ эВ (более 2.4 млн событий).

Эксперимент:

- НЕВОД-ШАЛ с 2018 2023 год, живое время ~ 48 месяцев;
- УРАН с января по июнь 2022 года, живое время ~ 6 месяцев.

Условия отбора НЕВОД-ШАЛ

Условия отбора событий:

- Максимальное энерговыделение в центральных детектирующих станциях;
- Сработало 5 и более кластеров одновременно;
- Суммарное энерговыделение более 1 ГэВ.

Эффективная площадь НЕВОД-ШАЛ

$$S_{eff} = 1664 \text{ m}^2$$

 $S_{eff} = 1664 \, \text{м}^2 \, | \, -50\%$ эффективность регистрации

Калибровка НЕВОД-ШАЛ

Из моделирования (CORSIKA + Geant4):

• Мюонный пик в эксперименте (13 пКл) соответствует $E_{\text{пик.}}$ = 11.5 МэВ.

• Энерговыделение при прохождении одной заряженной частицы:

$$\langle E_e \rangle = E_0 = 8.26 \text{ M}_{\odot}B.$$

Спектр энерговыделения *е* и ү центральной части ШАЛ.

Точность восстановления направления ШАЛ

Пример регистрации группы мюонов в ДЕКОР

Угловое разрешение ДЕКОР ~ 1°

ПКЛ-2 ID 55

Точность направления ШАЛ ~ 3.9°

Точность восстановления параметров ШАЛ

Распределение событий по расстоянию *R*

Точность восстановления оси:

 $\Delta R \sim$ 3.4 M

Корреляция восстановленной и моделированной мощности ливня

Точность восстановления мощности: Для $IgN_{e(MOД.)} = 10^{5\pm0.1}$: 15 %

ФПР по данным НЕВОД-ШАЛ

Средние ФПР:

1 – данные эксперимента (2 года),

2 – результаты моделирования,

3 – теоретическая плотность частиц по функции НКГ (IgN $_{\rm e}$ = 5, S = 1.36).

Спектр мощности по данным НЕВОД-ШАЛ

1.
$$N_e = (1.1 - 6.5) \times 10^5$$
:

$$k_1 = 2.45 \pm 0.01$$

2.
$$N_e = 7.6 \times 10^5 - 7.3 \times 10^6$$
:

$$k_2 = 2.67 \pm 0.01$$
.

$$\Delta$$
k =0.22

Сравнение с другими установками

EAS-TOP (M. Aglietta, 1999):

 $IgN_{ek} = 5.63 \pm 0.07$

 $\Delta k = 0.25 \pm 0.07$

MAKET-ANI (A.Chilingarian, 2007):

 $IgN_{ek} = 5.84 \pm 0.07$

 $\Delta k = 0.48 \pm 0.04$

НЕВОД-ШАЛ:

 $IgN_{ek} = 5.81$

 $\Delta k = 0.23$

KASCADE (K.-H. Kampert, 1998):

 $IgN_{ek} = 5.7 \pm 0.07$

ШАЛ-МГУ (Е. А. Вишневская, 2004)

Калибровка УРАН

Калибровочная зависимость

К - калибровочный коэффициент для 4 детектора 1 кластера

Распределение калибровочных коэффициентов

ПКЛ-2 ID 39

Тепловые нейтроны в ШАЛ

ФПР тепловых нейтронов

Зависимость числа адронов и мощности ливня

Заключение

- 1. Установка НЕВОД-ШАЛ позволяет восстанавливать параметры ливней с точностью по направлению **4**°, оси **3.4м** и мощности **15**%.
- 2. В данных НЕВОД-ШАЛ наблюдается излом в спектре мощности **предварительно** в районе **IgN**_e ~ **5.81** на величину **0.2**.
- 3. Установка НЕВОД-ШАЛ позволяет проводить перекрестную калибровку других установок для регистрации различных компонент ШАЛ.
- 4. По данным УРАН измерены ФПР нейтронов: $r_0 = 10$ м.

Спасибо за внимание!

Восстановленные параметры по данным НЕВОД-ШАЛ

Распределение восстановленного возраста

Восстановленные параметры по данным НЕВОД-ШАЛ

Литература

- 1. M. Aglietta et al. The EAS size spectrum and the cosmic ray energy spectrum in the region 10^{15} - 10^{16} eV. Astroparticle Physics 10, I-9, (1999).
- 2. K.-H. Kampert et al. First results from the KASCADE air shower experiment. <u>Second Meeting</u> on New Worlds in Astroparticle Physics (1998).
- 3. Е. А. Вишневская и др. Восстановление энергетического спектра и массового состава первичных космических лучей из спектров широких атмосферных ливней по числу электронов и мюонов. <u>Вестник Московского университета, сер.3. Физ.Астр. №1 (2004)</u>.