Status of Laser Gravitational Wave Antennas

Sergey P. Vyatchanin

Faculty of Physics, M.V. Lomonosov Moscow State University

38 All Russian Cosmic Ray Conference Moscow, 3 July 2024

Image: A matrix

Outline

Introduction

- 2 Scale of displacements
- 3 Laser GW detectors what is now?
- 4 Standard Quantum Limit (SQL) and how to surpass it
- 5 Quantum variational measurement
- 6 Squeezed input

GW150914: 14 September 2015

of black Masses holes $29 M_{\odot}$, $36 M_{\odot}$ at distance 1,3 billions of light years During 100 msec $\simeq 3M_{\odot}$ transforms to GW Bottom: The Keplerian eff. black hole separation in units of Schwarzschild radii $(R_{\rm S} = 2GM/c^2)$ and the eff. relative velocity given by the post-Newtonian parameter $v/c = (GM\pi f/c^3)^{1/3}$,

14 сентября 2015 (GW150914)

Gravitational signal was detected by two detectors of LIGO (Laser Interferometric Gravitational Observatory) in Hanford and Livingston.

Figure: Lines: 1) Signals in Hanford am Levingston, 2) After filtration in the 35 - 350 Hz band, 3) Residuals after filtration, 4) A time-frequency representation.

Схема антенны aLIGO

Figure: Схема лазерных интерферометров aLIGO. Узкие пики: калибровка (33–38, 330, and 1080 Гц), моды упругих колебаний нитей подвеса (500 Гц и гармоники), 60 Гц (и гармоники) электропитания.

Нобелевские премии

1993 г.

Рассел Халс и Джозеф Тейлор за открытие гравитационных волн по изменению частоты двойных пульсаров.

2017 г.

Райнер Вайс, Барри Бариш и Кип Торн за решающий вклад в детектор LIGO и наблюдение гравитационных волн

Theory of General Relativity and GW Detectors

1993 r. Nobel Prize (Russell Hulse and Joseph Taylor) for discovery of GW via change of frequency of double pulsar rotation.

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Ты помнишь, как все начиналось...

Твердотельные антенны (1970 – 1990)

Дж. Вебер в лаборатории

Владимир Борисович Брагинский

S.P. Vyatchanin (Moscow St. Univversity)

GW Detectors

April 2024

8 / 40

Idea of laser GW antenna

M.E. Hertsenshtein and V.I. Pustovoit, Zh.Eks.Ter.Fiz. **43**, 605 (1962)

GW Detectors

Схема и вид

1992 г. — Kip Thorne, Ronald Driver (CIT) and Rainer Weiss (MIT) предложили LIGO.

イロト イロト イヨト

LIGO: две антенны (4 км)

1992 г. — Kip Thorne, Ronald Driver (CIT) and Rainer Weiss (MIT) предложили LIGO (Laser Inteferometric Gravitational Observatory). 1992 г. — гр. В.Б.Брагинского начала сотрудничать с LIGO.

2002 г. — Initial LIGO: S1 (scientific run), начаты записи сигнала. 2010 г. — остановка Initial LIGO, начат переход на Advanced LIGO. 2015 г. — инженерный и научный запуск Advanced LIGO,

Initial LIGO

Сложнейшая инженерная установка

S.P. Vyatchanin (Moscow St. Univversity)

GW Detectors

April 2024

< □ > < □ > < □ > < □ > < □ >

Пройден тяжелый путь (2002 – 2010)

A D > A B > A B

LIGO Scientific Collaboration

VIRGO, GEO600

Virgo (Италия, Франция) Антенна (3 км) в Кошине (Италия)

GEO (Великобритания, Германия) Антенна (600 м) в Ганновере

Cryogenic

КАGRA (Japan) — зеркала при криогенной температуре.

S.P. Vyatchanin (Moscow St. Univversity)

GW Detectors

International G.-W. Observatory Network (IGWN)

2 Scale of displacements

- 3 Laser GW detectors what is now?
- 4 Standard Quantum Limit (SQL) and how to surpass it
 - 5 Quantum variational measurement
 - Squeezed input

Scale of displacements

From Earth to atom

From atom to LIGO: $d_{LIGO} \simeq 10^{-4} d_n$

Atoms on surface

Surface fluctuations (rough estimate)

At room temperature $\Delta x \simeq 10^{-10}$ m. On spot 10 cm ×10 cm – about $N = 10^{18}$ atoms. Surface fluctuations ("breathing") $\Delta X \simeq \frac{\Delta x}{\sqrt{N}} \simeq 10^{-19}$ m (1)

More accurate calculations

LIGO: mean position of spot D = 10 cm fluctuates for $\tau \simeq 0.01$ c $\Delta X_{\text{therm}} \simeq 10^{-19}$ m It is about *B* 10 *billions (!) times smaller* than atom, or *B* 10 *thousands (!) times smaller* than nucleus Is it possible to measure? V.B. Braginsky, V.I. Panov and V.D. Popelnyuk, 1981

Superconducting capacity meter, gap 4 microns:

 $\Delta X \simeq 10^{-19}$ m, gap 4 microns, for $\tau = 10$ c

"Initial" LIGO, 2011

Laser beam measures coordinate averaged over spot D = 6 cm

 $\Delta X \simeq 4 \times 10^{-18}$ m, distance L = 4 km, for time $\tau \simeq 0.01$ c

Advanced LIGO, 2023

 $\Delta X \simeq 0.5 \times 10^{-19}$ м, distance L = 4 km, for time $\tau \simeq 0.01$ c (!)

Image: A math a math

- 2 Scale of displacements
- 3 Laser GW detectors what is now?
- 4 Standard Quantum Limit (SQL) and how to surpass it
 - 5 Quantum variational measurement
 - Squeezed input

Advanced LIGO A+

A+ status for O4 (March 2023)

O4 A+ systems delivered, installed, tested; commissioning in progress

- Improved squeezed light injection
 - ✓ OPO Upgrade
 - ✓ High-T Faraday isolators
 - ✓ Adaptive mode matching
- ✓ Frequency-Dependent Squeezing (FDS) >
 - ✓ Squeezed light injection, Civil + Vacuum
 - Filter cavity optics, seismic isolation, suspensions, baffles, sensing, control/data system
- ✓ Civil construction
- ✓ Vacuum system expansion

Now O4 operates.

- Up to 5.4 dB squeezing achieved! (LLO, 10 Feb 2023)
 - Quantum noise suppressed throughout signal band!

(excerpted from M. Zucker NSF talk)

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Current sensitivity of Advanced LIGO A+

Sensitivity and squeezing improvement

Frequency Dependent Squeezing Achieved in Lousiana and Hanford Interferometers

< <>>>

O4a Summary

04a 1368975618-1389456018 Home Summary Analysis - Locking - Range Segments Time accounting - Links -

Time [weeks] from 2023-05-24 15:00:00 UTC (1368975618.0)

・ロト ・四ト ・ヨト ・ヨト

22 / 40

O4a (more than 1/2 year) – 81 significant candidates

O4 Significant Detection Candidates: 81 (92 Total - 11 Retracted)

O4 Low Significance Detection Candidates: 1610 (Total)

Show All Public Events

Page 1 of 7. next last »

SORT: EVENT ID (A-Z)

Significant alerts:

- False alarm rate less than ~1/month
- ~ 1 BBH per 3 days actual
- ~ 1 BNS per 3-6 months predicted
- Other alerts:
 - Not significant and false alarm rate less than few per day.

	Possible Source (Probability)	Significant				
S240109a	BBH (99%)	Yes	Jan. 9, 2024 05:04:31 UTC	GCN Circular Query Notices VOE		1 per 4.3136 years
S240107b	BBH (97%), Terrestrial (3%)	Yes	Jan. 7, 2024 01:32:15 UTC	GCN Circular Query Notices VOE	Ð	1.8411 per year
S240104bl	BBH (>99%)	Yes	Jan. 4, 2024 16:49:32 UTC	GCN Circular Query Notices VOE		1 per 8.9137e+08 years

BBH - 81 events. BNS - 0 events.

・ロト ・四ト ・ヨト ・ヨト

A+ Status and Plans

The <u>LSC "Post-O5" report</u> recommends pursuing a series of upgrades for the LIGO detectors collectively known as A#

We are aiming to have a mature conceptual design and costing to be able to submit a proposal by mid-2025 frame.

Design parameter	A+	A♯	CE
Arm length	4 km 🗕	$4\mathrm{km}$	$20\mathrm{km},40\mathrm{km}$
Arm power	750 kW	$1.5\mathrm{MW}$	$1.5\mathrm{MW}$
Squeezing level	6dB 🗕	$10\mathrm{dB}$	$10\mathrm{dB}$
Mass of test-mass	40 kg 🛏	$100 \mathrm{kg}$	$320\mathrm{kg}$
Test-mass coatings	A+ 🗕	A+/2	A+
Suspension length	1.6 m 🛏	$1.6\mathrm{m}$	$4\mathrm{m}$
Newtonian suppression	0 db 🗕	6 db	$20\mathrm{db}$

See Monday afternoon SUS/SEI session talk by Edgard Bonilla

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

24 / 40

What is the same

The same vacuum tubes, arms 4 km

Difference

- Mirror' mass is 200 kg
- Material crystal silicon
- Support: ribbons from crystal silicon
- Temperature of masses: 123 K
 - Lower mechanical losses
 - At 123 K thermal expansion coefficient ightarrow 0
 - Large thermal conductivity of silicon

Problem: there is commercial available silicon with mass about 50 kg, not more.

A B > 4
 B > 4
 B

Future plans

- 2 Scale of displacements
- 3 Laser GW detectors what is now?
- 4 Standard Quantum Limit (SQL) and how to surpass it
 - 5 Quantum variational measurement
 - Squeezed input

Noise budget: L1GO Louisiana, 2021

Sensitivity is close to SQL. What is it?

Coherent state of quantum oscillator

Zero state $|0\rangle$

$$\sqrt{\langle \Delta x^2 \rangle} = \sqrt{\frac{\hbar}{2m\omega}}, \quad \sqrt{\langle \Delta p^2 \rangle} = \sqrt{\frac{\hbar m\omega}{2}} \quad \Rightarrow \quad \langle \mathcal{E} \rangle = \frac{\hbar \omega}{2}$$

Cohherent state α

lpha — mean amplitude, $n_0 = lpha^2$ — mean qaunta number

$$\langle \mathcal{E} \rangle = \hbar \omega_0 \alpha^2 + \frac{\hbar \omega}{2},$$

 $\Delta n = \sqrt{n_0}, \quad \Delta \phi = \frac{1}{2\sqrt{n_0}}$

GW Detectors

29 / 40

Standard Quantum Limit (SQL)

Coherent state of light

Uncertainty of phase ϕ is quanta number *n* in laser pulse (*N* — mean quanta number):

$$\Delta n = \sqrt{N}, \quad \Delta \phi = \frac{1}{2\sqrt{N}}$$

SQL – V.B. Braginsky idea (1968)

Reason of SQL^a: continious measurement and Heisenberg principle:

 $\Delta X_{
m meas} \, \Delta P_{
m BA} \geq \hbar/2$.

^aV.B. Braginsky, Sov. Phys. JETP, **26**, 831, 1968. V.B. Braginsky and F.Ya. Khalili, Quantum measurement, 1992. S.P. Vyatchanin (Moscow St. Univversity) GW Detectors

April 2024

30 / 40

Simple optic meter

Measurement error — phase fluctuations

Back action

Back action: amplitude fluctuations (fluctuations of light pressure force)

$$\delta P_{\rm BA} = 2\hbar k \sqrt{N}, \quad \delta X_{\rm BA} = \frac{\delta P_{\rm BA} \tau}{m},$$

イロト イヨト イヨト イヨト

Total error of coordinate

$$\Delta x_{\text{total}} = \sqrt{\delta X_{\text{meas}}^2 + \delta X_{\text{BA}}^2} = \sqrt{\left[\frac{1}{4k\sqrt{N}}\right]^2 + \left[\frac{2\hbar k\sqrt{N} \cdot \tau}{m}\right]^2}$$
$$\Delta x_{\text{total}}|_{\text{min}} = \Delta X_{SQL} = \sqrt{\frac{\hbar\tau}{m}}, \quad N_{\text{opt}} = \frac{m}{8\hbar k^2 \tau}$$

2

メロト メロト メヨト メヨト

Quantum Non-Demolition Measurement (QND)

To measure integral of movement — back action cancellation^a.

For example, invariant for free mass — speed (momentum). But it should be *direct* measurement — difficulty.

^aV.B. Braginsky and F.Ya. Khalili, Quantum measurement, Cambridge Univ. Press, 1992

Not QND measurement

- Quantum variational measurement
- Squeezed input
- Optical rigidity

Realization — more easy.

- 2 Scale of displacements
- 3 Laser GW detectors what is now?
- 4 Standard Quantum Limit (SQL) and how to surpass it
- 5 Quantum variational measurement
- 6 Squeezed input

What will be at $\overline{N > N_{opt}}$?

SQL — at $N = N_{opt}$. At $N > N_{opt}$ quasi-classically: LP force is larger in point A, it transforms to A'In B LP force is smaller, it it transforms to B'Phase disturbance.

It means — squeezing

 \Rightarrow we have to measure squeezed quadrature SQL can be surpassed^a

^aS.P. Vyatchanin, ZhETF, 109, 1873, 1996

34 / 40

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Example: Squeezing in nonlinear media

A B > 4
 B > 4
 B

- 2 Scale of displacements
- 3 Laser GW detectors what is now?
- 4 Standard Quantum Limit (SQL) and how to surpass it
 - 5 Quantum variational measurement

Idea of squeezed input

Phase diagrams

Figure: Left: input wave is in coherent state (dashed), phase of output wave is disturbed due to LP pressure $(A \rightarrow A', B \rightarrow B/)$. Right: input wave is in squeezed state (dashed), initial squeezing is chosen in optimal way so that after reflection — phase squeezing.

Frequency dependence

Squeezing should depend on spectral frequency

Recall

$$q_{\phi}(\Omega) = \beta \left\{ d_{\phi}(\Omega) - \mathcal{K} d_{a} \right\} - \sqrt{2\beta\mathcal{K}} \frac{F_{s}(\Omega)}{\sqrt{2\hbar m \Omega^{2}}},$$
$$q_{a}(\Omega) = \beta d_{a}(\Omega), \quad \mathcal{K} \equiv \frac{2\hbar\kappa_{0}\omega_{0}^{2}A^{2}}{mL^{2}\Omega^{2}\left|\frac{\kappa_{0}}{2} - i\Omega\right|^{2}}, \quad \beta \equiv \frac{\frac{\kappa_{0}}{2} + i\Omega}{\frac{\kappa_{0}}{2} - i\Omega}.$$

Power parameter \mathcal{K} defines the value of ponderomotive squeezing. It depends on frequency ($\mathcal{K} \sim 1/\Omega^2$).

GW Detectors

Frequency dependent squeezing

Experimental difficulties

- Relatively easy to obtain squeezing on high frequencies in range 100 kHz and larger. For GW detectors we need squeezing in band 10 Hz 1 kHz.
- Frequency dependent squeezing on low frequencies difficult task.
- Loss factor: squeezing is very vulnerable to optical losses ("problem of waist").

$$b_{a} = R_{\epsilon} a_{a} + \epsilon e_{a} = R_{\epsilon} e^{r} a_{a \text{ vac}} + \epsilon e_{a},$$

$$b_{\phi} = R_{\epsilon} a_{\phi} + \epsilon e_{\phi} = R_{\epsilon} e^{-r} a_{\phi \text{ vac}} + \epsilon e_{\phi},$$

Plan and reality

A+ LIGO plan: to inject 12 dB squeezing. Now - 5.4 dB frequency dependent squeezing is realized (!) 5 dB $\Rightarrow \Delta q_{vac}/\Delta q_{sq} \simeq 1.8$, 10 dB $\Rightarrow \Delta q_{vac}/\Delta q_{sq} \simeq 3.1$

- 2 Scale of displacements
- 3 Laser GW detectors what is now?
- 4 Standard Quantum Limit (SQL) and how to surpass it
 - 5 Quantum variational measurement
- 6 Squeezed input

April 2024

- Accuracy of GW detectors are about 160 Mp.
- During O4a about 81 BBH (binary black holes) coalescences are detected.
- No BNS (binary neutron stars) coalescences are detected.
- Accuracy of GW detectors are close to SQL ⇒ surpassing SQL is an actual problem.
- Practical methods to overcome SQL for free mass
 - Quantum variational measurement
 - Squeezing input

39 / 40

Long Live Gravitational Waves! Long Live Quantum measurements!

Thank you for attention!

S.P. Vyatchanin (Moscow St. Univversity)

GW Detectors

April 2024

40 / 40