

- КОСМИЧЕСКИЕ ЛУЧИ О ВОЗМОЖНОМ СУЩЕСТВОВАНИИ СТРАННОЙ КВАРКОВОЙ МАТЕРИИ.
 - Шаулов СБ., Жуков В.В., Куприянова Е.А., Рябов В.А. Щепетов Л.А..

Существование странной кварковой материи (СКМ) и странных кварковых звезд (СКЗ) является одной из наиболее горячих проблем современной астрофизики.

Методы решения: **1. Поиск СКЗ: Астрономия**. **2. Поиск СКМ: Космические лучи.**

Кварковая модель и гипотеза странной кварковой материи (СКМ).

- Открытие кварков породило вопрос: Может ли в природе существовать стабильная Странная Кварковая Материя (СКМ)?
- Ответ: Теоретически ДА, но

в системе UD+S кварков при больших барионных числах А≥10³ вплоть до А~10⁵⁷ – Странные Кварковые Звезды (СКЗ).

Эдвард Виттен: E.Witten, <u>Cosmic separation of phases</u>, Phys. Rev. D 30, 272 (1984)

Рассмотрел фазовый переход Кварк-Глюонной Плазмы (КГП) в адроны.

Вывод: Должны были образоваться две фазы: ядерные звезды (ЯЗ) и кварковые (СКЗ).

Космические лучи (КЛ): ЯЗ - ядра от протонов до ядер железа, СКЗ - квазиядра (странглеты) с А=10³-10¹⁰ и положительным электрическим зарядом Z=30-10⁴.

Модель ядерно-электромагнитного каскада (Г.Т.Зацепин-1948).

Основная проблема экспериментов с ШАЛ – определение первичной энергии Е₀ и типа первичного ядра.

Каскад в атмосфере.

Электромагнитная компонента ШАЛ (e[±], γ, μ, ν) позволяет определять полное число электронов (заряженных частиц) N_e и E₀≈к N_e^γ.

- Основная информация о типе первичного ядра (p, He, CNO, Si, Fe) заключена в спектрах адронов ствола ШАЛ размером в десятки сантиметров.

- РЭК – единственный прибор, позволяющий изучать индивидуальные спектры адронов в стволе ШАЛ, т.е. получать практически полную информацию о наиболее энергичной их части.

регистрации ШАЛ.

Решетка: Регистрирует электромагнитную компоненту ШАЛ. Состав первичных КЛ зависит от модели.

Пример: KASCADE – уровень моря.

РЭК: Регистрирует индивидуальные адроны и их энергии (Е_γ>1 ТэВ) внутри стволов ШАЛ. Состав первичных КЛ зависит от наклона адронных спектров. Пример: АДРОН – уровень 3330 м.н.у.м

РЭК дает максимально возможные сведения о стволах ШАЛ. Эта информация существенно превышает возможности решеточных установок в определении состава КЛ.

Космические лучи: поиск СКМ

 Первое указание о возможном присутствии СКМ в КЛ появилось в работе Бъеркена и МакЛеррана (1979), объяснивших происхождение событий в рентгеноэмульсионной камере (РЭК) на г. Чакалтайа, получивших название "кентавры". Наиболее характерное событие приведено на рисунке.

В событии зарегиастрировано 43 адрона (π^{\pm}) и только 1 гамма квант (π^{0}). Еще 22 адрона должны были пройти без взаимодействия. Ожидаемое чсло π^{0} - 30.

Очевидое нарушение изотопинвариантности вызвало бурю эмоций.

Объяснение с помощью частиц СКМ [Бъеркен, МакЛерран] предполагает распад странглета на гипероны, что устраняет нарушение изотопической инвариантности.

Магнитная жесткость излома ядерных спектров - R≈0.1 ПВ.

Спектр протонов по данным стволов в эксперименте АЅу.

Зависимость от энергии

стволов в эксперименте АSy. доли ядер тяжелее гелия. На рисунках приведены данные ASy и KASCADE при

использовании моделей взаимодействия SIBILL и QGSJET.

Данные AS_γ, полученные из анализа стволов ШАЛ согласуются для обеих моделей.

Данные KASCADE по ШАЛ отличаются в три раза для двух моделей SIBILL и QGSJET.

Эксперимент АДРОН

- Эксперимент АДРОН уникален впервые получен банк событий РЭК+ШАЛ, включая мюоны.
- В связи с отсутствием временной селекции событий в РЭК, сопоставление событий в РЭК с ШАЛ проводилось статистически путем сравнения местоположения событий и их углов с использованием критерия Неймана-Пирсона. Дополнительный отбор ложных ШАЛ проводился по данным локализованных толчков в ионизационных камерах.
- В результате впервые были получены сопоставленные события РЭК+ШАЛ с долей фона не более 10%.
- Гибридные установки существовали на г.Чакалтайа и Тибете, но только на Тянь-Шане была получена статистика сопоставленных событий, что и позволило получить уникальные результаты.
- Надежность процедуры сопоставления была подтверждена путем проведения сопоставления с заведомо ложными координатами и углами событий.

Эксперимент АДРОН – умная установка.

Нарушение скейлинга в спектре адронов.

Наклон спектра E^{β} уменьшается с β =-1.9 (Fe) до β =-1.2 (протоны), средняя энергия адронов увеличивается — **проникающая** компонента.

Изменение наклона спектра адронов совпадает с положением колена – 3 ПэВ.

Наклон спектра адронов в зависимости от Ne.

В области нарушения скейлинга появляются гамма семейства с гало (β=-1.06).

Нарушение скейлинга объясняется изменением состава КЛ. Изменение ядерного взаимодействия противоречит данным LHC.

Избыток мюонов в ШАЛ с гамма-адронными семействами (эксперимент АДРОН).

для данного Ne.

Отношение числа ШАЛ, в которых наблюдался сигнал от мюонных взаимодействий в подземном детекторе ТШВНС, NM, к общему количеству зарегистрированных ливней NEAS, в зависимости от размера (числа частиц) в ливне Ne и минимальной множественности нейтронных сигналов MT.

Combining muon measurements (WHISP: Working group in Hadronic Interactions and Shower Physics)

$$z = \frac{\ln\left(N_{\mu}^{det}\right) - \ln\left(N_{\mu}^{sim}\right)}{\ln\left(N_{\mu}^{sim}\right) - \ln\left(N_{\mu}^{sim}\right)}$$

Lorenzo Cazon. 36th International Cosmic Ray Conference -ICRC2019-

Изменение ядерного состава КЛ в области колена.

- Нарушение скейлинга в области колена (увеличение энергии вторичных адронов) и избыток мюонов в ШАЛ с гамма-семействами в этой же области колена означает, что колено формируется неядерной компонентой.
- Вывод о наличии избытка мюонов в колене подтверждается современными данными подземного нейтронного монитора.
- Избыток мюонов (muon pazzle) наблюдается в эксперименте Оже вплоть до максимальных энергий, что можно рассматривать как наличие неядерной компоненты вплоть до конца спектра КЛ.
- Вариант стабильной неядерной компоненты единственный это СКМ.

Пуск ЈАСІІ-10 в Антарктиде

Yoshiyuki Takahashi (for the JACEE Cllaboration), Elemental Abundance of High Energy Cosmic Rays, Nclear Physics B (Proc. Suppl.) 60B (1998) 83-92

ЈАСЕЕ Магнитная жесткость обрезания R≈0.1 ПВ. Ядерная компонента ограничена энергией ~3 ПэВ (Fe).

Максимальная энергия КЛ $E_{max} \approx R \cdot Z_{max} \approx 0.1 \cdot 8 \cdot 10^3 \approx 10^{18}$ эВ. Максимальное значение Ne для КЛ Ne^{max}=10¹¹ ($E_0^{\text{яд}} \sim 2 \Gamma$ эВ·10¹¹~ 10²⁰эВ).

- Колено в спектре КЛ образуется казиядрами, т.е. стабильными, положительно заряженными частицами СКМ (Z=30-10⁴).
- Ядерный спектр КЛ ограничен энергиями E₀~3 ПэВ.
- При энергиях E₀=3-10³ ПэВ спектр формируется квазиядрами, максимальная энергия КЛ 10¹⁸ эВ.
- Значения N_e^{max}≈10¹¹ в ШАЛ (E₀~10²⁰ эВ в яд. модели) формируются квазиядрами с энергиями 10¹⁸ эВ (A=10¹⁰, Z=10⁴) за счет большого сечения взаимодействия (σ~10³ барн) и повышенной генерацией электромагнитной компоненты.
- Обрезание спектра КЛ при N_e^{max}≈10¹¹ обусловлено нулевым электрическим зарядом (Z=0) квазиядер с барионными числами A>10¹⁰. Зануление заряда объясняется проникновением электронов внутрь казиядер, т.к. при A>10¹⁰ λ_{compt}^{e-}<R_{str}
- Все КЛ имеют Галактическое происхождение.
- КЛ ультра высоких энергий и внегалактическая компонента КЛ отсутствуют.

материю.

- Остывшие странные кварковые звезды и uds кварковые образования меньших размеров могут формировать темную
- с временами жизни, превышающими время существования Вселенной.
- Все ядра, включая протоны, нестабильны
- СКМ основное состояние вещества вместо ядер Fe.

Фундаментальные следствия.

Спасибо за внимание.

Эксперимент ПАМИР (РЭК)

Нарушение азимутальной симметрии.

Выстроенность энергетически выделенных центров вдоль прямой.

Гало в супер семействах.

Адронная проникающая способность при электромагнитных поперечных импульсах.

Проникающая компонента в калориметре.

Первое указание на проникающую компоненту в ШАЛ было получено в Тянь-Шаньском калориметре Яковлевым с сотрудниками. В 1980 году было обнаружено увеличение длины поглощения каскадов в свинце с 800 до 1100 г/см2 при энергии адронов 100 ТэВ.

Зависимость λ_{abs} от энергии адронов.

Лидирующий чарм.

- Условия регистрации событий в эксперименте АДРОН принципиально отличаются от калориметрических данных.
- В калориметре каскад развивался в свинце, что позволяло объяснять затягивание каскада лидирующим чармом.
- В эксперименте АДРОН каскад развивается в атмосфере на высоте 2-3 километров над установкой, поэтому влияние чарма не сказывается.

СКМ модель – состав КЛ и сечение.

КЛ имеют сложный состав:

- до N_e=10⁶ это ядра;
- выше N_e=10⁶ это стабильная неядерная компонента.

Стабильная компонента – частицы странной кварковой материи (СКМ) при барионных числах А>10³.

Странглеты: Электрический заряд Z=30-1000 при A=10³-10⁶; Размер: R=R₀·A^{1/3}; Взаимодействие: $\sigma_{\text{геом}} = \pi R^2_0 \cdot A^{2/3}$ - в 6-2·10³ раз > σ_{Fe} Поэтому $\lambda_{\text{вз}}$ в атмосфере для странглетов – несколько грамм.

Спектр космических лучей в СКМ модели.

- 1. Резкость излома при 3 ПэВ.
- 2. Отсутствие странглетов при E₀<3 эВ.

Причина может быть связана с метостабильностью странглетов (S). По оценкам (Keith E, Ma E, HIP 4, 381,1996) -время жизни S: τ_{s} =10⁶ лет << $\tau_{\kappa\pi}$ = 10⁷-10⁸ лет. Тогда вклад дают только близкие источники. **Модель близкого одиночного** источника – Ерлыкин&Волфиндейл.

Резкость излома при 3 ПэВ и пороговый характер спектра S объясняется близостью и малым числом источников: 1-2.

Почему странглеты не проявляют себя в экспериментах с ШАЛ?

- Взаимодействия странглетов существенно отличаются от ядерных. Из за большого геометрического размера странглеты должны взаимодействовать часто, но с малым коэффициентом неупругости порядка K_{in}=10⁻²-10⁻³.
- В каждом взаимодействии выделяется относительно небольшая энергия порядка десятков ТэВ, но на длине взаимодействия протона λвз~100 г/см² таких взаимодействий набираются десятки.

В результате суммарный ШАЛ напоминает ШАЛ группы ядер CNO (Bjorken&Mak-Lerran).

Локальное нарушение скейлинга.

- Странглеты с минимальными значениями барионного числа A=10³ находятся на грани стабильности. Попадая в атмосферу, они взаимодействуют с ядрами воздуха, теряют стабильность и распадаются на гипероны.
- При этом странглеты могут генерировать жесткие спектры γквантов, регистрируемых в РЭК (Шаулов_1996). С ростом барионного числа стабильность странглетов повышается и распады прекращаются при некотором значении А, соответствующем N_e=10⁷-10⁸.
- Появление струй гиперонов в ограниченном интервале N_e может объяснить локальное нарушение скейлинга, образование гало в у-семействах и события типа Centauro.

Избыток мюонов в ШАЛ с у-семействами.

- Отличие характеристик взаимодействия для ядер и странглетов может также объяснять избыток мюонов, который наблюдается в ряде экспериментов при разных первичных энергиях КЛ (АДРОН, HEBOД, AUGER).
- Избыток мюонов в эксперименте АДРОН наблюдается в области нарушения скейлинга, т.е. в области где могут образовываться струи, состоящие из сотен гиперонов, образованных при распаде странглетов, , которые в свою очередь распадаются на нуклоны, К-мезоны, пионы и мюоны.
- Учитывая большое число взаимодействий в таких струях, можно ожидать, что общее число мюонов, образованных странглетами, может превышать их число в ядерных каскадах. На длине 100 г/см² мюонов может набраться больше чем в случае каскада образованного протонами. Причем часть гиперонов может проникать достаточно глубоко и имитировать мюоны.

Чем определяется обрезание спектра КЛ?

Барионное число странглетов меняется в широком дапазоне A=10³-10⁷.

Электрический заряд Z сначала растет от Z=30 до Z \approx 1000 (A=10³-10⁶), а затем уменьшается до Z=0 при A=10⁶-10⁷ из за того, что концентрация uds кварков сравнивается при увеличении A (n_u=n_d=n_s).

Частицы СКМ при А>10⁷ стабильны и нейтральны.

При Z=0 ускорение странглетов прекращается и спектр КЛ обрезается.

Происхождение лодыжки в спектре КЛ.

- Максимальные значения N_e формируются наиболее тяжелыми странглетами с барионными числами $A=10^6-10^7$ за счет их большого геометрического сечения и соответствуют наблюдаемым в эксперименте максимальным значениям N_e порядка $N_e \sim 10^{10}-10^{11}$.
- В области A=10⁶-10⁷ сечение взаимодействия увеличивается с ростом A, но энергия E₀ уменьшается из за уменьшения электрического заряда с Z=10³ до Z=0. При этом N_e тоже уменьшается и в конце спектра число событий увеличивается примерно вдвое лодыжка.

Основной вывод для КЛ.

Наиболее важный вывод СКМ модели для КЛ заключается в том, что все КЛ в этом случае имеют Галактическое происхождение и одинаковый с ядрами механизм ускорения на ударных волнах.

В результате энергия КЛ не должна превышать нескольких сотен ПэВ.

Как уже отмечалось, величина N_e при этом может быть достаточно большой из за большой массы и геометрического сечения взаимодействия странглетов.

• СПАСИБО ЗА ВНИМАНИЕ!

Strangelets : small lumps of SQM

 $- \sim 300 < A < 10^6$

Produced in collisions of strange stars

R. Klingenberg J. Phys. G27 (2001) 475 Accelerated as ordinary nuclei

- Strangelets have low Z/A
 - CFL and non-CFL strangelets differ wrt. Z •
 Experimental verification/falsification of –
 Strangelet existence Realistic from AMS-02
 [2008-?] Possible from lunar soil search [2005]
 (A,Z)-relation (CFL or ordinary) Optimistic,
 but not impossible from AMS-02 or lunar soil
 search Possible explanation of UHECR's

Аппроксимация пиков в экспериментальном спектре

N(d(gNe)

A.D.Erlykin^{1,2} and A.W.Wolfendale²

- Due to the strong energy dependence of
- the probability P(E) the size spectra of
- EAS containing g-quanta and g-families
- are flatter than those for all EAS.
- If primary spectra have an energy cut-off
- then EAS size spectra presented
- in log(INe3) vs. logNe coordinates
- look like real spectral lines.

Spectra of EAS with γ - families

Comments

- Spectral 'lines' are more distinct in the spectrum of EAS with γ-families than in the total spectrum of EAS
 (S/N≈1.3 vs. S/N≈0.5)
- Inspite of the lower statistics of EAS with gfamilies

the confidence level of the signal is the same as in the spectrum of all EAS.

Спектр ШАЛ в зависимости от энергии ядер ПКИ Е₀=kN_e^α

а) Спектр КЛ умножен на Е², б) спектр умножен на Е³. Колено – излом спектра при энергии 3 ПэВ.

Экспериментально измеряется N_e, E₀ – расчет по ядерной модели.
 E_{max}=10¹⁸ эВ - максимальная энергия ускорения ядер в Галактике.
 В результате возникает проблема КЛУВЭ и внегалактическая модель их происхождения.

Экспериментальные (LHCf) и модельные (EPOS) спектры γ от распада π⁰ при 9≈0.

Feynman scaling of the photon spectra

