

Ускорение космических лучей и нетепловое излучение Быстрых Голубых Оптических Транзиентов

Романский В. И., Быков А. М., Осипов С. М. Физико-технический институт им. А. Ф. Иоффе

Всероссийская конференция по космическим лучам

3 июля 2024

Работа поддержана Российским научным фондом (грант №21-72-20020)

Быстрые голубые оптические транзиенты (FBOTs)

- большая светимостью в оптическом и рентгеновском диапазоне
- смещение цветов в синюю сторону
- быстрый всплеском и затуханием светимости
- наличие движущейся с субрелятивистскими скоростями эжекты

Задача: построить модель ускорения космических лучей в подобных объектах и объяснить спектры наблюдаемого радио и рентгеновского излучения

Название	Дата события	Скорость эжекты	Максимальная светимость эрг/с		Расстояние Мпк	тояние Публикация
			Полная	X-ray		
AT2018cow "The Cow"	16.06.2018	0.13c	4 10^44	10^43	62	Ho et. al ApJ 871:73 (2020)
ZTF18abvkwla "The Koala"	12.09.2018	0.3c	>10^44	?	1395	Ho et. Al ApJ 895:49 (2020)
CSS161010	10.10.2016	0.55c	?	5 10^39 (детект)	150	Coppejans et. al ApJL 895:L23 (2020)
AT2020xnd	12.10.2020	0.2c	>10^43	7 10^42	1260	Perley et. al. MNRAS 508 4 (2021)
AT2020mrf	12.06.2020	0.08c	?	2 10^43	637	Yao et. al. arXiv:2112.00751v2 (2022)
AT2022tsd	7.09.2022	?	?	10^44	1300	Matthews et. al. RNAAS 7.6.126 (2023)
AT2023fhn	10.04.2023	?	?	10^42	1213	Chrimes et.al MNRAS 527 1 (2023)
AT2023vth	17.11.2023	?	?	?	340	Perley D. et. al, TNSCR 2023

Общий план работы

Радиоизлучение FBOT

Спектральная плотность потока энергии радио излучения CSS161010. Спектр имеет вид характерный для синхротронного самопоглощения.

Coppejans et. al, ApJL 895 (2020)

Функция распределения электронов $F(E) = N_o E^{-p}$,

с₁, с₅, с₆- константы Пахольчика,

 B_{\perp} перпендикулярное магнитное поле,

f – геометрический фактор заполнения объема

Проблема — предположение о строго степенном спектре электронов, а так же наличие в формулах неопределенных параметров ε_e , ε_B , E_0 , f

Chevalier "Synchrotron self-absorption in radio supernovae" ApJ 499:810 (1998) ⁴

Particle-in-Cell моделирование функции

распределения электронов

Функция распределения зависит от угла наклона поля. В квазиперпендикулярной волне ускорения практически нет

Вместо степенной функции и параметра ε_e можно использовать функцию распределения из моделирования для расчета излучения. Но PIC моделирование ограничено в масштабах, распределение только на низких энергиях 5

Код для расчета излучения

- Синхротронное излучение (с самопоглощением)
- Обратное комптоновское рассеяние
- Тормозное излучение
- Распад пионов в р-р столкновениях
- Учет геометрии источники, возможность учета неоднородностей, фитирование наблюдательных данных

https://github.com/VadimRomansky/Faina

Ghisellini Radiative Processes in High Energy Astrophysics: Lecture Notes in Physics, Volume 873 (2013)

Фитирование наблюдательных данных

Наблюдаемая спектральная плотность потока излучения F(v) – функция от магнитного поля, размера и концентрации. Можно найти минимум ошибки.

$$r(B,n) = \sum (F(v_i, B, n) - F_{obs}(v_i))^2 / \sigma_i^2$$

Радиус
$$R = V \cdot t$$
, толщина слоя $f = 0.5$

модель	В	n	r
$V = 0.5c$, $\theta = 80$	0.5	2×10^{6}	550
$V=0.5c, \theta=30$	0.1	5×10^{5}	140
$V=0.75c, \theta=80$	0.3	540	170
$V = 0.75c, \theta = 30$	0.34	17	57

Определение параметров источника

Параметры источника CSS161010 на 99 день

	Coppejans et. al.	Результаты моделировани
V	0.55c	0.75c
В	0.29 Гс	0.34 Гс
R	1.4 · 10 ¹⁷ см	1.9 · 10 ¹⁷ см
n	25 см ⁻³	17 см ⁻³

фиксировано произведение $f \cdot n$, остается свободный параметр

Сравнение спектров излучения в различных моделях с наблюдаемым Romansky, Bykov, Osipov Advances in Space Research (2024)

Моделирование ускорения частиц методом Монте-Карло

Код разработан А. Владимировым, Д. Элисоном, С. Осиповым

- Одномерная стационарная модель
- Рассеяние частиц по феноменологическому закону рассеяния
- Турбулентное магнитное поле характеризуется спектральной плотностью энергии W(x,k)
- Учитывается усиление магнитного поля за счет неустойчивостей вызванных током ускоренных частиц
- Итеративный процесс по подбору профиля УВ, сохраняющего закон сохранения импульса

$$B_{ls}(x, k_{res}) = \sqrt{4\pi \int_{k_{min}}^{k_{res}} W(x, k) dk + B_0^2}$$

$$\frac{k_{res}pc}{qB_{ls}(x, k_{res})} = 1$$

$$\lambda(x, p) = \frac{cp}{qB_{ls}(x, p)}$$

$$cos\Delta\theta = 1 - \epsilon(1 - cos\Delta\theta_{max})$$

$$dt = \frac{\lambda(x, p)}{v} \frac{\Delta\theta^2_{max}}{4}$$

Моделирование распределение протонов с помощью Монте-Карло

Стационарная ударная волна, феноменологический закон рассеяния возможность рассматривать большие масштабы.

Модель усиления магнитного поля при начальном значении $3 \cdot 10^{-5}$ Гс показывает значение $\varepsilon_B \approx 0.04$, что согласуется с результатами моделирования радиоизлучения

Максимальная энергия протонов ~ 10^{17} эВ, количество произведенных частиц таково, что одно подобное событие в 3000 лет в галактике может обеспечить наблюдаемую популяцию КЛ с энергиями ≈ 10 ПэВ

Быков, Осипов, Романский $^{\lg(p/m_pc)}$ 161 с 570 (2022)

Полные функции распределения

На больших энергиях функции распределения протонов и электронов, полученные методом Монте-Карло подобны. Отношение уровней инжекции ≈^me/m_p

Электроны испытывают обрезание за счет синхротронных потерь

$$t_{acc} = \int_{E_0}^{E} \frac{3}{v_1 - v_2} \left(\frac{D_1}{v_1} + \frac{D_2}{v_2}\right) \frac{dE}{E}$$
$$E_{max} \approx \frac{v}{c} \cdot \frac{m^2 c^4}{\sqrt{q^3 B}} = 5 \cdot 10^5 \, \Gamma \Im B$$

Так же распределение электронов меняется при удалении от фронта

$$f_t(E) = f_0 \left(\frac{E}{1 - 4e^4 B^2 Et/9m^4 c^7}\right) \frac{1}{(1 - 4e^4 B^2 Et/9m^4 c^7)^2}$$

11

Расчет синхротронного рентгеновского излучения

Romansky, Bykov, Osipov Advances in Space Research (2024)

Альтернативная модель Взаимодействие джета с фотонами близкой звезды

$$L_{IC}/L_{synch} = \frac{u_{ph}}{u_E}$$

Не учитывается самопоглощение

Необходимая $u_{ph} \approx 0.003$ эрг см $^{-3}$ слишком большая

Лоренц-фактор электронов, излучающих в диапазоне 0.3-10 кэВ при обратном комптоновском рассеянии ≈15. Можно оценить интенсивность и необходимое количество электронов и размер источника $n R > \frac{L_{IC}}{L_{star} \sigma_T c \gamma^2}$

Нужен очень узкий джет! $\theta < 0.01$, $R < 2 \cdot 10^{15}$ см, $n > 10^7$ см⁻³, $E > 10^{51}$ эрг

Взаимодействие джета с ветром близкой звезды

 $n \, \mathrm{CM}^{-3}$

Моделирование взаимодействия двух сильных ветров $\dot{M} = 10^{-4} M_{\odot}$ МГД кодом PLUTO и запуск джета в полученных условиях

 $E_{jet} = 10^{51}$ эрг, М = $0.0001 M_{\odot}$, $\vartheta = 0.5^{\circ}$

Спектр излучения обратного комптоновского рассеяния

При взаимодействии с более близкой звездой можно получать и большие светимости на более ранних временах

Выводы

- Результаты совместного РІС и Монте-Карло моделирования указывают на то, что FBOTs могут являться источниками космических лучей с энергиями до 10-100 ПэВ
- Рассчитанные в модели спектры синхротронного излучения, согласуются с наблюдаемыми, определены параметры источника CSS161010
- Модель позволяет объяснить наблюдаемое нетепловое рентгеновское излучение
- 4) В рамках альтернативной модели с взаимодействием джета со звездным ветром, показана возможность получения высокого уровня рентгеновского излучения за счет обратного комптоновского рассеяния

СПАСИБО ЗА ВНИМАНИЕ!

Bill Saxton, NRAO/AUI/NSF