ОЦЕНКА СПЕКТРА ЛЕГКОЙ КОМПОНЕНТЫ КОСМИЧЕСКИХ ЛУЧЕЙ В ОБЛАСТИ ЭНЕРГИЙ 200-10000 ТЭВ ГИБРИДНЫМ МЕТОДОМ.

Свешникова Л.Г.

от эксперимента TAIGA

ОСНОВНЫЕ НАПРАВЛЕНИЯ ИССЛЕДОВАНИЯ 'ЭКСПЕРИМЕНТА TAIGA

- Исследование космических лучей в области десятки ТэВ – 300 ПэВ, структура и состав спектров КЛ
- к Камма-астрономия высоких энергий > 6 ТэВ, исследование высокоэнегичной части спектров источников, поиск ПэВатронов

СПЕКТР КЛ ЛУЧЕЙ В ОБЛАСТИ КОЛЕНА

 Именно в этой области энергий возможно и предлагается использование новых данных эксперимента TAIGA по гибридным событиям для выделения легкой компоненты КЛ

ГИБРИДНЫЕ СОБЫТИЯ – HISCORE + IACT

22-23 сезон – Boomerang IACT +HiSCORE (0-30°) HiSCORE + IACTO1, Sfull=1km2, 38 часов HiSCORE + IACTO2, Sfull=1km2, 45 часов HiSCORE + IACTO3 Sfull=1km2, 55 часов Вся имеющаяся Статистика в 50 раз больше

HiSCORE:: энергия, направление прихода, положение оси ливня

ІАСТ - Сорт частицы

S=1.2km2, delt=30, S=1.0 km2 Seff Tel1 ~0.4 km

TAIGA IACT (AYT)

Area of mirrors - 9.6 m² (34mirrors) Focus length 4.75 m FoV 9.6° pixel FoV 0.36° 600 pixels(pmt XP1911 Ø 19 мм) PSF ~0.1° CCD for checking telescope pointing direction.

Основные параметры Width Length Dist Alfa tet

КАК РАЗДЕЛЯЮТСЯ ЛИВНИ ОТ ГАММА-КВАНТОВ И АДРОНОВ В РАЗЛИЧНЫХ ЭКСПЕРИМЕНТАХ

Три подхода

 По угловому распределениею
Черенковского света, образованного ШАЛ с помощью атмосфеных Черенковских
телескопов АЧТ, IACT HESS, MAGIC, CTA,
VERITAS и тд

2. По функции пространственного Распределения заряженных частиц HAWC , Tibet Asgam

3. По числу мюонов в ШАЛ (Е>100 ТэВ)

LHAASO

ВЫБОР КРИТЕРИЕВ ВЫДЕЛЕНИЯ 1) WIDTH - RTEL 2018

НЕОБХОДИМО - М-К ДО ЭНЕРГИИ 1016

Pr, He,Ox,Si,Fe 70-500 TeV Pr, 878 файл 200-2000 TeV

LogSize

LogSize

M-K 200-2000 TEV PR GAM=-1 M-K 200-4000 TEV FE **4 CLASTERS**

Рис. 2. Зависимость width(Size) и kurtosis(Size) для ядер Pr+He (красные точки) и от ядер железа (синие точки).

M-K: PR 0.2-2 PEV & PR 0.2-20 PEV

Очень важно, что тип зависимости Width (LgSize) не изменяется до 20 PeV

СПАВНЕНИЕ М-К С ЭКСПЕРИМЕНТОМ

Exper. 19 days 48 hours IACT01-black poimts, M-C red points

Size, p.e.

9 june All HiSCORE Monte-Carlo rig

Energy reco, TeV

ПРОЦЕДУРА ВЫДЕЛЕНИЯ ЛЕГКОЙ КОМПОНЕНТЫ

Мы использовали алгоритм, хорошо зарекомендовавший себя в гамма-астрономии для восстановления спектра гамма-квантов:

1 этап: по данным Монте-Карло проводится настройка критериев отбора PrHe Width (Size)max (в данной работе);

2 этап: по данным Монте-Карло рассчитывается Sef всех гибридных событий S_{Hyb} и событий, отобранных по критериям легкой компоненты S_{PrHe}

 $S_{Hyb}(E) = N_{Hyb}(E) / N_{primary}(E) * S_{M-K} ; \qquad S_{PrHe}(E) = N_{PrHe}(E) / N_{primary}(E) * S_{M-K}$ (1)

З этап: - Fall(E)= $F_{Hyb}(E)/dT/dOmega/Seff$, $F_{Pr+He}(E)$ = FhybPrYe/dT/dOm/SeffPrHe интенсивность полного первичного потока всех частиц и легкой компоненты

Переход от потока гибридных событий к спектру всех частиц – носит методический характер для проверки правильности процедуры.

М-К СПЕКТРЫ И ЭФФЕКТИВНАЯ ПЛОЩАДЬ ВСЕХ ГИБРИДНЫХ СОБЫТИЙ И PR-НЕ КОМПОНЕНТЫ В ИНТЕРВАЛЕ 0.2-20 PEV

Очень важно, что тип зависимости F(E) остается степенным вплоть до 20 PeV

ВОССТАНОВЛЕННЫЕ СПЕКТРЫ ВСЕХ ЧАСТИЦ И PR_НЕ КОМПОНЕНТЫ АСТО1

ВОССТАНОВЛЕННЫЕ СПЕКТРЫ ВСЕХ ЧАСТИЦ И PR_НЕ КОМПОНЕНТЫ ІАСТО2

ВОССТАНОВЛЕННЫЕ СПЕКТРЫ ВСЕХ ЧАСТИЦ И PR_НЕ КОМПОНЕНТЫ ІАСТОЗ

Спектр космических лучей

8%, Fe 16%

РАЗНИЦА В СПЕКТРАХ ЛЕГКОЙ И ТЯЖЕЛОЙ КОМПОНЕНТ

Получено без деления на Seff !!!

РАЗНИЦА В СПЕКТРАХ ЛЕГКОЙ И ТЯЖЕЛОЙ КОМПОНЕНТ (получено без деления на к Seff) !!!!

Излома в спектре "тяжелой компоненты" не наблюдается

выводы и переспективы

- * В спектрах Pr+He наблюдается ярко выраженный излом при ~ 2-3 ПэВ, т.е. основной излом определяется изломом в легкой компоненте.
- При выделении 'тяжелой компоненты' в области после излома излома не наблюдается.
- * Метод выделения легкой компоненты по данным атмосферных телескопов IACT работает.
- × Статистика, имеющаяся по гибридным событиям на порядок превышает представленную здесь, что позволит уточнять результаты.
 - Возможно включение в анализ других параметров имиджей
- × Необходимо увеличение М-К симуляций, особенно для средних ядер для уточнения результатов

× СПАСИБО за ВНИМАНИЕ !

BOOMERANG 22-23 IACT 01

