Реконструкция массового состава космических лучей по архивным данным эксперимента KASCADE

Никита Петров (ИЯИ РАН, ИЯФ СО РАН)

с использованием машинного обучения

План выступления

- 1. Космические лучи
- 2. Мотивация
- 3. Анализ и результаты
- 4. Заключение

Космические лучи

- Космические лучи это выскоэнергичные частицы, которые прибывают из космоса
- Широкие атмосферные ливни (ШАЛы) это каскады субатомных частиц и ионизированных ядер, родившихся в атмосфере в результате взаимодействия с ней первичной частицы
- КАSCADE регистрирует космические лучи через широкие атмосферные ЛИВНИ

(рис. из статьи doi:10.1126/science.1134046)

Эксперимент KASCADE

КАSCADE — эксперимент по изучению космических лучей, в Карлсруэ, Германия (1996 – 2013)

КАSCADE array: 252 станции, оборудованные сцинтилляционными детекторами, расположенные в прямоугольной сетке на площади 200×200 м²

Энергетический диапазон:

~ 500 ТэВ – 100 ПэВ

Схема KASCADE Array (сверху), схемы отдельных станций KASCADE Array типа I и II (снизу)

Эксперимент Ковер

Разработанная в данной работе методика может применяться к данным с похожих экспериментов

Fig. 1. Layout of the Carpet-3 array. (1) remote recording points; 18 counters based on a liquid scintillator; rectangles without a signature indicate new remote recording points; 9 counters based on a plastic scintillator.

Схема эксперимента Ковер-3*

Цель работы

Восстановить энергетические спектры пяти массовых компонент (p, He, C, Si, Fe) космических лучей в диапазоне энергий 1 – 100 ПэВ, используя архивные данные эксперимента KASCADE

Мотивация

- новые (post-LHC) адронные модели
- большой объём качественных данных KASCADE*, сравнимый с современными экспериментами
- несогласие между экспериментами в этом диапазоне энергий
- широкое распространение методов машинного обучения

* Данные предоставлены KCDC: A.Haungs et al; Eur. Phys. J. C (2018) 78:741;(doi: 10.1140/epjc/s10052-018-6221-2)

Эксп. данные и Монте-Карло

Arrival times, [ns] e/γ deposits, [MeV]

- $\log_{10}(E/eV) = 15.45$
- $\log_{10} \text{Ne} = 5.15$
- $\log_{10} N\mu = 4.52$
- s = 1.09

 μ deposits, [MeV]

• $\theta = 19.37^{\circ}$

- 10¹

- φ =354.8°
- x = 13.7 m
- y = 28.2 m

Пример экспериментального события. (В центральной части KASCADE детекторы отстутствуют)

θ < 18°

- $\log_{10} \text{Ne} > 4.8$
- $\log_{10} N\mu > 3.6$
- $\sqrt{(x^2 + y^2)} < 91 \,\mathrm{m}$
- 0.2 < s < 1.48

Использованы критерии отбора, рекомендованные KASCADE

Экспериментальные данные

~ 8.5 · 10⁶ событий (после отборов) 20:80 разбиение (случайным образом по заходам) на открытую/закрытую (unblind/blind) части

Монте-Карло

(CORSIKA + симуляция детектора)

QGSJet.II-04 (~ 1.8 · 10⁵ событий) EPOS-LHC Sibyll 2.3c

QGSJet.II-02

Классификатор типа первичной частицы

Сопvolutional Neural Network простая архитектура (~30тыс. параметров) принимает: депозиты (как двухканальное изображение 16х16) + Ne, Nµ, θ, s

диапазонах для CNN на адронной модели QGSJet-II.04

Метод восстановления

 Folded спектры получены прямым предсказанием классификатора (CNN)

Energy, [eV]

Спектры (folded) массовых компонент в зависимости от энергии

Энергетическое разрешение стандартной реконструкции KASCADE для адронной модели QGSJet-II.02

Погрешности

Таблица с "базовыми" систематическими погрешностями для QGSJet-II.04

Неработающие детекто Массовый состав МС Ограниченное количест Спектральный индекс М Регуляризация анфолди Последовательный анфо по энергии и типу части

Проводим анфолдинг для трёх post-LHC адронных моделей: QGSJet-II.04, EPOS-LHC, Sibyll 2.3c Диапазон от минимального до максимального значения в каждом энергетическом бине считаем "теоретической" неопределённостью

ры	5 – 18 %
	13 - 16 %
во МС	8 - 25 %
ЛС	до 4 %
инга	1 – 24 %
олдинг 1ЦЫ	до 8 %

Сравнение с ІсеТор

Сравнение покомпонентных спектров, полученных в данной работе (оранжевый) с учётом "теоретических" неопределённостей (штриховка), для QGSJet-II.04 (заливка) и результатов IceTop для Sibyll 2.1 (коричневый)

• Результаты в пределах "теоретических" неопределённостей согласуются с ІсеТор

• Точность с учётом "теоретических" неопределённостей сравнима с ІсеТор (без неё)

Средний логарифм массы Результаты работы с учётом "теоретических" неопределённостей согласуются с IceTop, TALE и LHAASO, причём наш результат EPOS-LHC тяготеет к TALE, a Sibyll 2.3с — к IceTop

Сравнение зависимости среднего логарифма массы от энергии первичной частицы для результатов данной работы (оранж.) с учётом "теоретической" неопределённости (штриховка), заливка — сист. погр. для GSJet.II-04; ІсеТор (коричн., адронная модель Sibyll 2.1), TALE (оливк., EPOS-LHC), LHAASO (син., QGSJet-II.04, EPOS-LHC, Sibyll 2.3d)

Поиск изломов в индивидуальных спектрах

Энергетические спектры протонной (слева), гелиевой (центр) и железной (справа) массовых компонент, аппроксимации power-law (PL, синяя линия) и broken power-law (BPL, чёрная линия)

- компонент (5.2 о и 3.9 о соответственно)
- изломом GRAPES-3 в спектре протонов при 166 ТэВ

• Коленоподобная структура в спектрах протонной и гелиевой массовых

Указание на излом в спектре железной компоненты (2.4 о). Возможная связь с

Заключение

- Проведён повторный анализ данных эксперимента KASCADE
- Неопределённости разработанного метода ниже чем в оригинальной реконструкции KASCADE
- Восстановлены спектры массовых компонент для трёх post-LHC адронных моделей (QGSJet-II.04, EPOS-LHC, Sibyll 2.3c) и учтены связанные с ними неопределённости
- Обнаружено превышение протонной компоненты в сравнении с оригинальными результатами KASCADE
- Наблюдаем согласие результатов (с учётом неопределённостей) с IceTop, TALE и LHAASO
- Обнаружена коленоподобная структура в спектрах р (>50) и Не (>30) компонент, а также впервые показано указание (2.4**о**) на излом в Fe спектре

Спасибо за внимание!

Публикации

- 1. Kuznetsov, M., Petrov, N., Plokhikh, I., & Sotnikov, V. (2024). Energy spectra of elemental groups of cosmic rays with the KASCADE experiment data and machine learning. Journal of Cosmology and Astroparticle Physics, 2024(05), 125. https:// doi.org/10.1088/1475-7516/2024/05/12
- 2. Kuznetsov, M., Petrov, N., Plokhikh, I., & Sotnikov, V. (2024). Methods of machine learning for the analysis of cosmic rays mass composition with the KASCADE experiment data. Journal of Instrumentation, 19(01), P01025. https:// doi.org/10.1088/1748-0221/19/01/p01025

backup / ML architectures

	input 1		innut		$\left[\left(\text{None} 514 \right) \right]$		п –		
	Input_1		mput:		[(None 514)]				
	InputLayer		Jourp	lut:		iie, 514)			
	dense		input: ((None, 514)				
	Dense		output	t: ((None	, 256)			
	batch	tion input:		(None,	(None, 256)				
	Batcl	ation	ion output:		(None, 256)				
	activation		inp	input:		(None, 256)			
	Activation		outp	put: (No		ne, 256)			
	dropout		inpu	input:		(None, 256)			
	Dropout		output: (None		e, 256)				
	dense_1		input: (None		e, 256)				
	Dense		output: (Nor		(None	le, 256)			
1	batch	tion 1	ion 1 input:			. 256)			
	Batcl	ation	on output:		(None, 256)				
L					1		· •		
							_		
						11 - 11)		
	a	ctivation_1	l ing	out:		one, 256	<u></u>		
	a	ctivation_1 Activation	l ing out	put: put:	(No : (No	one, 256) one, 256))		
		ctivation_1 Activation	l ing out	put: put:	(No : (No	one, 256) one, 256)))		
		ctivation_1 Activation dropout_1	l ing out	put: put: ut:	(No : (No (Nor	one, 256, one, 256) ne, 256)			
		ctivation_1 Activation dropout_1 Dropout	l ing out inp outp	out: put: ut: out:	(No : (No (No (No	ne, 256) ne, 256) ne, 256) ne, 256)			
		ctivation_1 Activation dropout_1 Dropout	l ing out inp outp	out: put: ut: out:	(No : (No (Nor (Nor	one, 256) one, 256) ne, 256) ne, 256)			
		ctivation_1 Activation dropout_1 Dropout dense_2	l ing out inpu outp	put: put: ut: out: t:	(Nor (Nor (Nor (Nor	one, 256) one, 256) ne, 256) ne, 256)			

backup / GRAPES hadrening

Энергетический спектр протонной компоненты в различных экспериментах: doi:10.21468/SciPostPhysProc.13.021

backup / неработающие детекторы

Усреднённое по заходам е/ү энерговыделение в детекторах KASCADE. Примеры заходов с нерабочими детекторами (три левых), и со всеми рабочими детекторами (справа)

backup / Ablation study

backup / <ln A>

Поиск коленоподобных структур (все результаты)

Колено KASCADE

LR test: p-value $4.89 \cdot 10^{-1}$ significance 0.7σ

PL model: $\gamma_1 = -3.01 \pm 0.05$

BPL model: $\gamma_1 = -2.84 \pm 0.20$ $\gamma_2 = -3.11 \pm 0.12$ $E_{kn} = 5.92 \pm 5.27$ PeV

Кросс-адронные СМ

«Кросс-адронные» матрицы ошибок CNN с генераторами QGSJet-II.04, EPOS-LHC, Sibyll 2.3c (Q, E, S для краткости). В подписях к матрицам сначала указан генератор, используемый в обучении, после запятой — на тесте.

в) Q, S

e) E, S

и) S, S

ж) S, Q

Диагональные элементы СМ от энергии

Зависимость диагональных элементов матриц ошибок от реконструированной энергии Е для CNN, обученной и тестированной с генератором адронных взаимодействий QGSJet-II.04.

Результаты потоков для отдельных моделей

Систематики по Монте-Карло

Проверка массового анфолдинга на MC с QGSJet-II.04. Полосы иллюстрируют систематические погрешности из-за процедуры анфолдинга и неопределённости матрицы отклика