

37 ВСЕРОССИЙСКАЯ КОНФЕРЕНЦИЯ ПО КОСМИЧЕСКИМ ЛУЧАМ

Мониторинг космической погоды с помощью системы наземных детекторов космических лучей

В.В. Борог, А.Н. Дмитриева, Ю.Н. Мишутина Национальный исследовательский ядерный университет МИФИ НОЦ НЕВОД

vvborog@mephi.ru

27 июня - **2** июля **2022** года ниияф мгу

Информация о приближении КВМ к орбите Земли поступает от АСЕ за 30-40 мин. Более ранние предвестники можно получить из характеристик потока КЛ в момент их прохождения через область КВМ в гелиосфере.

В потоке КЛ возникает анизотропия или нестационарность. Высокоэнергичные КЛ проходят все расстояние во внутренней гелиосфере менее чем за 10 мин. В то время как КВМ достигает орбиты Земли за 1-3 суток в зависимости от скорости плазмы.

Опережение по времени оказывается значительным. Однако возникающие вариации в КЛ составляют малую величину (порядка 1%) и зашумлены за счет ограниченной статистической точности и случайных локальных процессов.

В работе анализируются временные ряды N(t) различных вторичных КЛ, достигающих уровня Земли (установки НМ и МГ). Для этих рядов вычисляются соответствующие ряды фактора нестационарности F(t) по методике фликкер-шумовой (ФШ) спектроскопии [1].

Значения F(t) меняются от малых величин, где N(t) имеет регулярный случайный или гармонический характер, до больших величин – в моменты пересечения области КВМ в гелиосфере.

Анализ временных рядов по фактору нестационарности оказывается информативным для изучения динамических процессов в различных открытых системах, к числу которых относится распространение КЛ в хаотических э/м полях.

При этом для выявления предвестников не требуется каких-либо функций-анализаторов.

^{1.} Тимашев С.Ф. // Фликкер-шумовая спектроскопия: информация в хаотических сигналах. М.: Физматлит. 2007. -248 с.

Фактор нестационарности временного ряда

Разностные моменты Q:

$$Q_k = \int_0^{\alpha T} \int_{t_k}^{t_k+T} \left[N(t) - N(t+\tau) \right]^2 \frac{dt}{T} \frac{d\tau}{\alpha T}$$

$$Q_{k-1} = \int_{0}^{\alpha T} \int_{t_k}^{t_k + T} \left[N(t) - N(t+\tau) \right]^2 \frac{dt}{T} \frac{d\tau}{\alpha T}$$

$$F_{k}(t_{k}) = \frac{Q_{k} - Q_{k-1}}{1/2(Q_{k} + Q_{k-1})} / \frac{\Delta T}{T} = \frac{\Delta Q_{k}}{\langle Q_{k} \rangle} / \frac{\Delta T}{T}$$

$$\alpha < 0.5$$
; $t_k = k\Delta T, k = 0,1,2,3,...$

T-| интервал усреднения

 ΔT - приращение интервала

au- параметр временной задержки или лаг

N(t) – измеряемая величина временного ряда (поток КЛ)

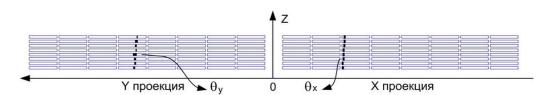
Q – разностный момент (переходная структурная функция), который характеризует изменение динамики в пределах скользящего временного окна Т.

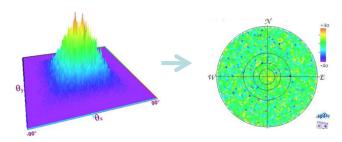
 $F_k(t_k)$ - удельный фактор нестационарности временного ряда

С.Ф. Тимашев, «Фликкер-шумовая спектроскопия. Информация в хаотических сигналах». 2007 г.

S.F. Timashev et al. (1999-2017 rr.)

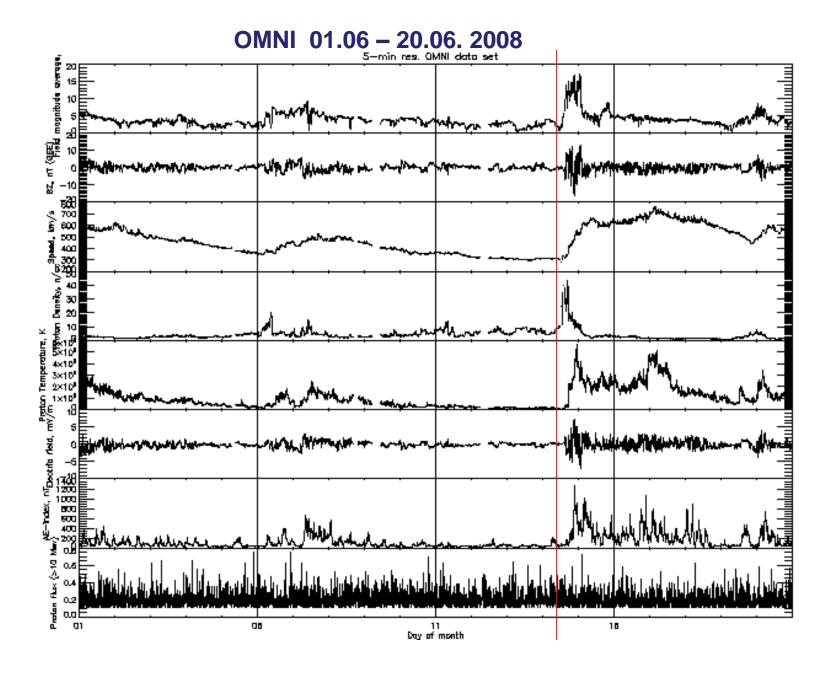
Мировая сеть нейтронных мониторов



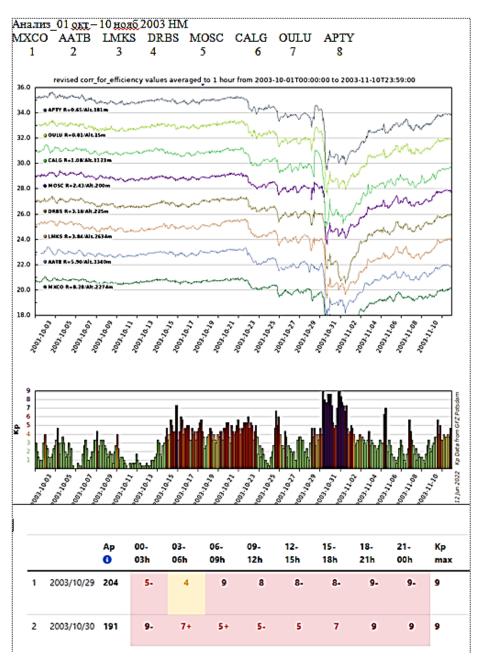

Как правило, в «нужное» время для мониторинга работает 5 — 10 HM (R>1-2 ГВ)

NM – 1 ряд N(t)

Мюонный годоскоп УРАГАН


«Кольцевые» ряды N(t)

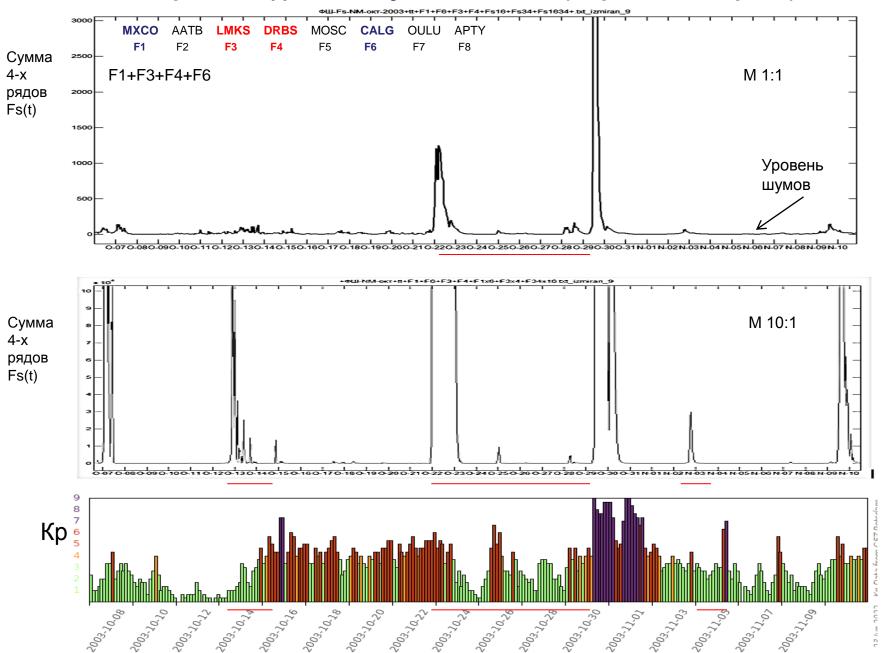
ряд	Ni	θmin – θmax, °
1	N1	0 - 17
2	N2	17 - 26
3	N3	26 - 34
4	N4	34 - 44
5	N5	44 - 90


1-минутные матрицы Суммирование – 1-часовые (θ, φ)

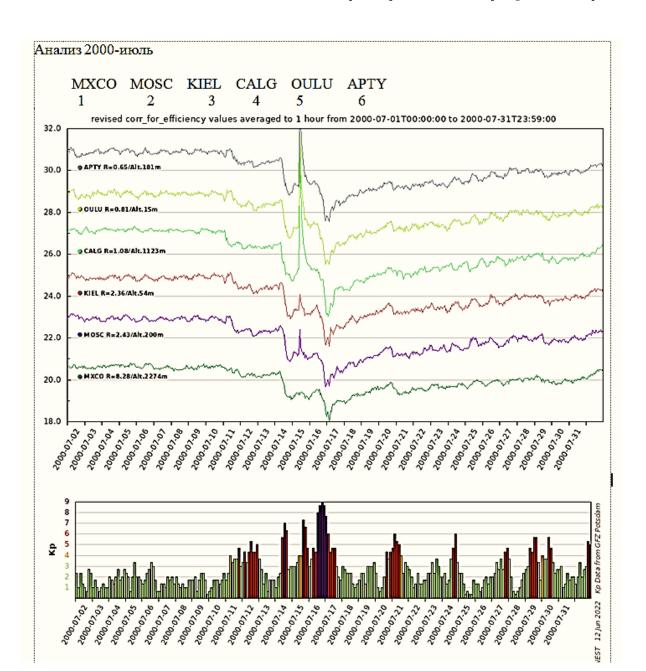
<Ni> ≈ 10**6 (1/час) – одно кольцо

 ${f Coбытue~14.06.2008~(G1)}$ NM: MXCO, NANM, AATB, LMKS, MOSC, CALG, APTY N(t) F(t) **MXCO** F(t)**LMKS** 8 7 6 5 4 ᅙ 3 2 1 3030.800> ²⁰06.06.19 ₱ 29 Jun 2022 2008.05.05 10 12 14 16 июнь F1+F2+F3+F4+F5+F6+F7

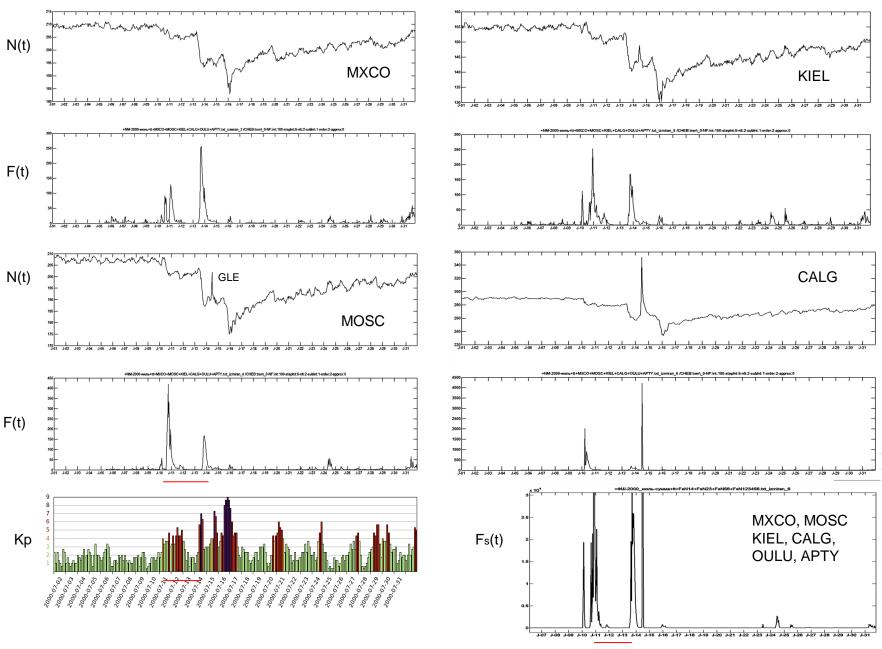
Событие 29 октября 2003 года (G5) № 1 и № 2 (Ap=204, 191)



Список 50 событий максимальной геоэффективности

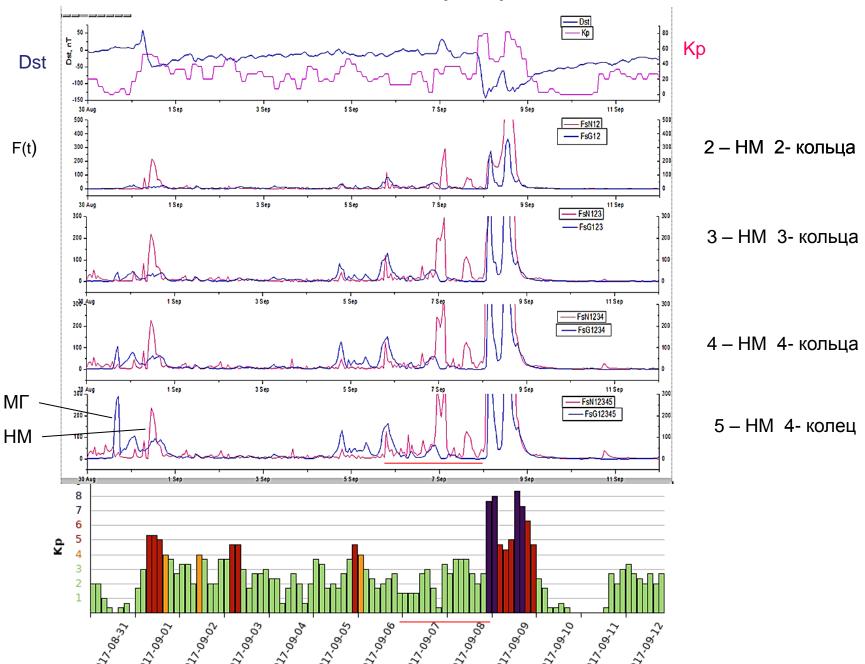

		Ap 🕕	00-03h	03-06h	06-09h	09-12h	12-15h	15-18h	18-21h	21-00h	Кр тах
1	2003/10/29	204	5-	4	9	8	8-	8-	9-	9-	9
2	2003/10/30	191	9-	7+	5+	5-	5	7	9	9	9
3	2000/07/15	164	3	4-	5-	4+	8	9-	9	9-	9
4	2001/03/31	192	7-	9-	9-	6+	7	8	8+	7 +	9-
5	2004/07/27	186	8+	8-	7÷	8	9-	8+	6+	6	9-
6	2004/11/10	161	8-	8+	9-	8+	7+	6+	5+	4 ÷	9-
7	2003/11/20	150	1	4-	6+	6+	8-	9-	9-	8	9-
8	2001/11/06	142	9-	9-	7	5	5+	7-	6+	6+	9-
9	2004/11/08	140	9-	9-	8+	7	5	3-	4+	5+	9-
10	2004/11/09	119	6-	6	5	6	7	7-	9-	7	9-
11	2005/08/24	102	3-	3+	6+	9-	7+	7-	6+	4+	9-
12	1998/05/04	101	6	9-	8+	6-	6	4-	2+	3	9-
13	2000/04/07	74	9-	6	6	4	4	4+	4-	4-	9-
14	1998/09/25	117	8-	8	8+	7	6+	6-	3-	2+	8+
15	2003/10/31	116	8+	8-	7 +	7-	7 +	5-	4	4 +	8+

https://www.spaceweatherlive.com/en/aur oral-activity/top-50-geomagnetic-storms.html

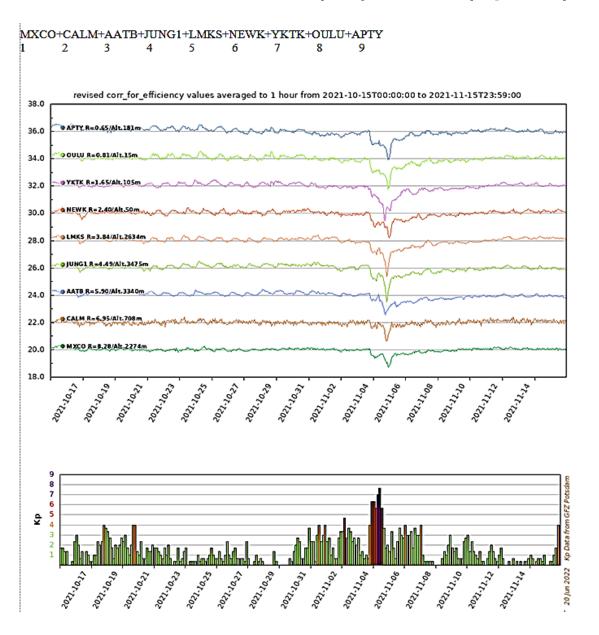

Расчет рядов F(t) для 4-х установок HM (Европа и Америка)

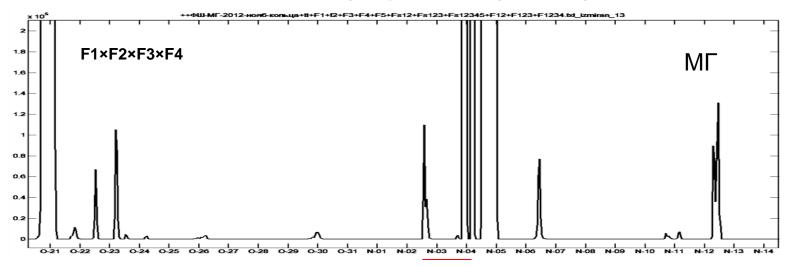
Событие 15 июля 2000 года (G5) № 3 (Ap=164). HM

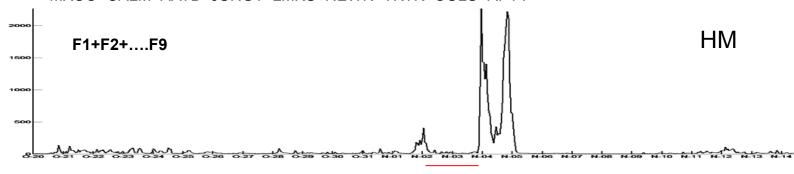
Событие 15.07.2000 г. КВМ (G5) + GLE (14.07) НМ

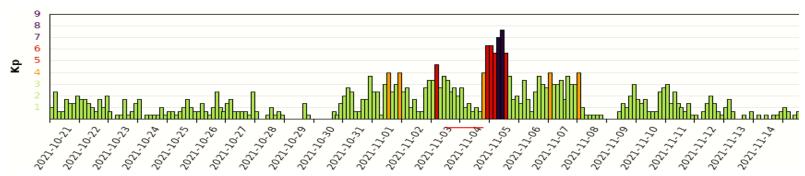

Сумма рядов Fs(t) для 6-ти HM

Событие 08.09 2017 года (G4) № 17 (Ap=106) . Данные МГ


Сумма 5-ти рядов Fs для «колец» N(T) мюонного годоскопа


Событие 08.09.2017 г. КВМ (G=4). Данные НМ +МГ


Событие 04.11.2021 года (G3) № 44 (Ap= 72). МГ + НМ



Событие 04.11.2021 года (G3) № 44 (Ap=72). Данные МГ и НМ

Сопоставление предикторов по сети НМ и МГ

Дата	Номер из [1]	G	<ap></ap>	Δ $f t$, сутки	Детекторы для анализа
29.10.2003	1	5	204	7	НМ
30.10.2003	2	5	191	7	НМ
15.07.2000	3	5	164	2	НМ
08.09.2017	17	4	106	2	МГ
04.11.2021	44	3	72	2	МГ, НМ
15.06.2008	-	1	100	2	МГ, НМ

Заключение

- 1. Разработана методика дистанционной идентификации динамических процессов во внутренней гелиосфере, связанных с мощной солнечной активностью.
- 2. Применение отдельной многонаправленной установки типа МГ для идентификации геоэффективных возмущений эквивалентно системе НМ, расположенных в разных точках Земли.
- 3. Пробный анализ показал, что для событий типа G3 –G5 практически всегда наблюдаются предикторы, с опережением в несколько суток проявления CA у орбиты Земли.
- 4. Предложенная методика фликкер-шумовой спектроскопии может быть эффективной для обнаружения скрытых возмущений во многих физических процессах разной природы.

Спасибо За внимание